doi: 10.3934/dcdsb.2021250
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Reaction-advection-diffusion competition models under lethal boundary conditions

1. 

College of General Education, Kookmin University, 77, Jeongneung-Ro, Seoul, 02707, Republic of Korea

2. 

Department of Mathematics, Korea University, 145, Anam-Ro, Seoul, 02841, Republic of Korea

3. 

Department of Mathematics, Korea University, 2511, Sejong-Ro, Sejong, 30019, Republic of Korea

* Corresponding author: Inkyung Ahn

Received  January 2021 Revised  June 2021 Early access October 2021

In this study, we consider a Lotka–Volterra reaction–diffusion–advection model for two competing species under homogeneous Dirichlet boundary conditions, describing a hostile environment at the boundary. In particular, we deal with the case in which one species diffuses at a constant rate, whereas the other species has a constant rate diffusion rate with a directed movement toward a better habitat in a heterogeneous environment with a lethal boundary. By analyzing linearized eigenvalue problems from the system, we conclude that the species dispersion in the advection direction is not always beneficial, and survival may be determined by the convexity of the environment. Further, we obtain the coexistence of steady-states to the system under the instability conditions of two semi-trivial solutions and the uniqueness of the coexistence steady states, implying the global asymptotic stability of the positive steady-state.

Citation: Kwangjoong Kim, Wonhyung Choi, Inkyung Ahn. Reaction-advection-diffusion competition models under lethal boundary conditions. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021250
References:
[1]

I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), 117 pp. doi: 10.1090/memo/1161.  Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canad. Appl. Math. Quart., 3 (1995), 379-397.   Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

R. S. CantrellC. Cosner and Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199-214.  doi: 10.1016/j.mbs.2006.09.003.  Google Scholar

[5]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[6]

R. S. CantrellC. Cosner and Y. Lou, Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng., 7 (2010), 17-36.  doi: 10.3934/mbe.2010.7.17.  Google Scholar

[7]

X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[8]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.  Google Scholar

[9]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion, SIAM J. Appl. Math., 44 (1984), 1112-1132.  doi: 10.1137/0144080.  Google Scholar

[10]

C. Cosner and Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489-503.  doi: 10.1016/S0022-247X(02)00575-9.  Google Scholar

[11]

E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[12]

E. N. Dancer, On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc., 326 (1991), 829-859.  doi: 10.1090/S0002-9947-1991-1028757-9.  Google Scholar

[13]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[14]

J. C. EilbeckJ. E. Furter and J. López-Gómez, Coexistence in the competition model with diffusion, J. Differential Equations, 107 (1994), 96-139.  doi: 10.1006/jdeq.1994.1005.  Google Scholar

[15]

S. Fernández-Rincón and J. López-Gómez, Spatially heterogeneous Lotka–Volterra competition, Nonlinear Anal., 165 (2017), 33-79.  doi: 10.1016/j.na.2017.09.008.  Google Scholar

[16]

J. E. Furter and J. López-Gómez, On the existence and uniqueness of coexistence states for the Lotka-Volterra competition model with diffusion and spatially dependent coefficients, Nonlinear Anal., 25 (1995), 363-398.  doi: 10.1016/0362-546X(94)00139-9.  Google Scholar

[17]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka–Volterra competition model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 281-336.  doi: 10.1017/S0308210500023659.  Google Scholar

[18]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman, New York, 1991.  Google Scholar

[19]

M. G. Kreǐn and M. A. Rutman, Linear operators leaving invariant a cone in Banach space (in Russian), Usp. Mat. Nauk. 3 (1948), 3–95. English translation in Amer. Math. Soc. Transl., 26 (1950).  Google Scholar

[20]

K. Kuto and T. Tsujikawa, Limiting structure of steady-states to the Lotka-Volterra competition model with large diffusion and advection, J. Differential Equations, 258 (2015), 1801-1858.  doi: 10.1016/j.jde.2014.11.016.  Google Scholar

[21]

K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations, 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[22]

K.-Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal., 44 (2012), 1808-1830.  doi: 10.1137/100819758.  Google Scholar

[23]

K.-Y. Lam and W.-M. Ni, Advection-mediated competition in general environments, J. Differential Equations, 257 (2014), 3466-3500.  doi: 10.1016/j.jde.2014.06.019.  Google Scholar

[24]

K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067.  doi: 10.3934/dcds.2010.28.1051.  Google Scholar

[25]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc., 305 (1988), 143-166.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[26]

L. Li and R. Logan, Positive solutions to general elliptic competition models, Differential Integral Equations, 4 (1991), 817-834.   Google Scholar

[27]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.  Google Scholar

[28]

Y. Lou and S. Martínez, Evolution of cross-diffusion and self-diffusion, J. Biol. Dyn., 3 (2009), 410-429.  doi: 10.1080/17513750802491849.  Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[30]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999), 157-190.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[31]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems, J. Differential Equations, 218 (2005), 117-135.  doi: 10.1016/j.jde.2005.06.020.  Google Scholar

[32]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[33]

P. ZhouD. Tang and D. Xiao, On Lotka-Volterra competitive parabolic systems: Exclusion, coexistence and bistability, J. Differential Equations, 282 (2021), 596-625.  doi: 10.1016/j.jde.2021.02.031.  Google Scholar

[34]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

show all references

References:
[1]

I. Averill, K.-Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Amer. Math. Soc., 245 (2017), 117 pp. doi: 10.1090/memo/1161.  Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canad. Appl. Math. Quart., 3 (1995), 379-397.   Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

R. S. CantrellC. Cosner and Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199-214.  doi: 10.1016/j.mbs.2006.09.003.  Google Scholar

[5]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[6]

R. S. CantrellC. Cosner and Y. Lou, Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng., 7 (2010), 17-36.  doi: 10.3934/mbe.2010.7.17.  Google Scholar

[7]

X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst., 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[8]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.  Google Scholar

[9]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion, SIAM J. Appl. Math., 44 (1984), 1112-1132.  doi: 10.1137/0144080.  Google Scholar

[10]

C. Cosner and Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489-503.  doi: 10.1016/S0022-247X(02)00575-9.  Google Scholar

[11]

E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[12]

E. N. Dancer, On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc., 326 (1991), 829-859.  doi: 10.1090/S0002-9947-1991-1028757-9.  Google Scholar

[13]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[14]

J. C. EilbeckJ. E. Furter and J. López-Gómez, Coexistence in the competition model with diffusion, J. Differential Equations, 107 (1994), 96-139.  doi: 10.1006/jdeq.1994.1005.  Google Scholar

[15]

S. Fernández-Rincón and J. López-Gómez, Spatially heterogeneous Lotka–Volterra competition, Nonlinear Anal., 165 (2017), 33-79.  doi: 10.1016/j.na.2017.09.008.  Google Scholar

[16]

J. E. Furter and J. López-Gómez, On the existence and uniqueness of coexistence states for the Lotka-Volterra competition model with diffusion and spatially dependent coefficients, Nonlinear Anal., 25 (1995), 363-398.  doi: 10.1016/0362-546X(94)00139-9.  Google Scholar

[17]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka–Volterra competition model, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 281-336.  doi: 10.1017/S0308210500023659.  Google Scholar

[18]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman, New York, 1991.  Google Scholar

[19]

M. G. Kreǐn and M. A. Rutman, Linear operators leaving invariant a cone in Banach space (in Russian), Usp. Mat. Nauk. 3 (1948), 3–95. English translation in Amer. Math. Soc. Transl., 26 (1950).  Google Scholar

[20]

K. Kuto and T. Tsujikawa, Limiting structure of steady-states to the Lotka-Volterra competition model with large diffusion and advection, J. Differential Equations, 258 (2015), 1801-1858.  doi: 10.1016/j.jde.2014.11.016.  Google Scholar

[21]

K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differential Equations, 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[22]

K.-Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, SIAM J. Math. Anal., 44 (2012), 1808-1830.  doi: 10.1137/100819758.  Google Scholar

[23]

K.-Y. Lam and W.-M. Ni, Advection-mediated competition in general environments, J. Differential Equations, 257 (2014), 3466-3500.  doi: 10.1016/j.jde.2014.06.019.  Google Scholar

[24]

K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067.  doi: 10.3934/dcds.2010.28.1051.  Google Scholar

[25]

L. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc., 305 (1988), 143-166.  doi: 10.1090/S0002-9947-1988-0920151-1.  Google Scholar

[26]

L. Li and R. Logan, Positive solutions to general elliptic competition models, Differential Integral Equations, 4 (1991), 817-834.   Google Scholar

[27]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.  Google Scholar

[28]

Y. Lou and S. Martínez, Evolution of cross-diffusion and self-diffusion, J. Biol. Dyn., 3 (2009), 410-429.  doi: 10.1080/17513750802491849.  Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[30]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999), 157-190.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[31]

K. Ryu and I. Ahn, Positive solutions for ratio-dependent predator-prey interaction systems, J. Differential Equations, 218 (2005), 117-135.  doi: 10.1016/j.jde.2005.06.020.  Google Scholar

[32]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[33]

P. ZhouD. Tang and D. Xiao, On Lotka-Volterra competitive parabolic systems: Exclusion, coexistence and bistability, J. Differential Equations, 282 (2021), 596-625.  doi: 10.1016/j.jde.2021.02.031.  Google Scholar

[34]

P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.  Google Scholar

Figure 1.  Case $ \Delta m > 0 $: (a) Instabilities of $ (0,\theta_\nu) $ when $ \alpha = 0 $, (b) Stability of $ (0,\theta_\nu) $ when $ \alpha = 0.1 $ ($ m(x) = 1-0.4\sin(\pi x), \mu = 0.01, \nu = 0.02 $)
Figure 2.  Case $ \Delta m < 0 $ : (a) Stabilities of $ (0,\theta_\nu) $ when $ \alpha = 0 $, (b) Instability of $ (0,\theta_\nu) $ when $ \alpha = 0.1 $ ($ m(x) = 0.5+0.4\sin(\pi x), \mu = 0.02, \nu = 0.01 $)
Figure 3.  $ \Delta m $ changes its sign : (a) Stability of $ (0,\theta_\nu) $ when $ \alpha = 0 $, (b) Instability of $ (0,\theta_\nu) $ when $ \alpha = 0.5 $ ($ m(x) = 0.8+0.2\cos(4\pi x), \mu = 0.02, \nu = 0.01 $)
[1]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[2]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136

[3]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013

[4]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[5]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[6]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[7]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[8]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[9]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[10]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[11]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[12]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[13]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[14]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[15]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[16]

Pablo Álvarez-Caudevilla, Julián López-Gómez. Characterizing the existence of coexistence states in a class of cooperative systems. Conference Publications, 2009, 2009 (Special) : 24-33. doi: 10.3934/proc.2009.2009.24

[17]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[18]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[19]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[20]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (73)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]