doi: 10.3934/dcdsb.2021289
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The existence and properties of the solution of a class of nonlinear differential equations with switching at variable times

School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China

* Corresponding author: Yunfei Peng

Received  August 2021 Early access December 2021

Fund Project: The first author is supported by the Foundation of Postgraduate of Guizhou Province grant 2019032; The second author is supported by the National Natural Science Foundation of China grant 12061021 and 11661020

In this paper, we deal with the qualitative theory for a class of nonlinear differential equations with switching at variable times (SSVT), such as the existence and uniqueness of the solution, the continuous dependence and differentiability of the solution with respect to parameters and the stability. Firstly, we obtain the existence and uniqueness of a global solution by defining a reasonable solution (see Definition 2.1). Secondly, the continuous dependence and differentiability of the solution with respect to the initial state and the switching line are investigated. Finally, the global exponential stability of the system is discussed. Moreover, we give the necessary and sufficient conditions of SSVT just switching $ k\in \mathbb{N} $ times on bounded time intervals.

Citation: Huanting Li, Yunfei Peng, Kuilin Wu. The existence and properties of the solution of a class of nonlinear differential equations with switching at variable times. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021289
References:
[1]

J. L. Aguilar and R. A. Garcia, An extension of LaSalle's invariance principle for switched systems, Systems Control Lett., 55 (2006), 376-384.  doi: 10.1016/j.sysconle.2005.07.009.  Google Scholar

[2]

L. I. Allerhand and U. Shaked, Stability of stochastic nonlinear systems with state-dependent switching, IEEE Transactions on Automatic Control, 58 (2013), 994-1001. doi: 10.1109/TAC.2013.2246094.  Google Scholar

[3]

J. BaekC. Kang and W. Kim, Practical approach for developing lateral motion control of autonomous lane change system, Applied Sciences, 10 (2020), 31-43.  doi: 10.3390/app10093143.  Google Scholar

[4]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[5]

R. W. Brockett, Hybrid models for motion control systems, in essays on control: Perspectives in the theory and its applications, Progr. Systems Control Theory, 14 (1993), 29-53.   Google Scholar

[6]

C. Cai and A. Teel, Robust input-to-state stability for hybrid systems, SIAM J. Control Optim., 51 (2013), 1651-1678.  doi: 10.1137/110824747.  Google Scholar

[7]

I. Capuzzo Dolcetta and L. C. Evans, Optimal switching for ordinary differential equations, SIAM J. Control Optim., 22 (1984), 143-161.  doi: 10.1137/0322011.  Google Scholar

[8]

J. H. B. Deane and D. C. Hamill, Instability, subharmonics, and chaos in power electronic systems, 20th Annual IEEE Power Electronics Specialists Conference, 5 (1990), 260-268.  doi: 10.1109/PESC.1989.48470.  Google Scholar

[9]

S. EngellS. KowalewskiC. Schulz and O. Stursberg, Continuous-discrete interactions in chemical processing plants, Proceedings of IEEE, 88 (2000), 1050-1068.  doi: 10.1109/5.871308.  Google Scholar

[10]

L. C. Evans and A. Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equation, Trans. Amer. Math. Soc., 253 (1979), 365-389.  doi: 10.1090/S0002-9947-1979-0536953-4.  Google Scholar

[11]

J. Ezzine and A. H. Haddad, On the controllability and observability of hybrid systems, Internat. J. Control, 49 (1989), 2045-2055.  doi: 10.1080/00207178908559761.  Google Scholar

[12]

J. P. Hespanha, Uniform stability of switched linear systems: Extensions of Lasalle's invariance principle, IEEE Trans. Automat. Control, 49 (2004), 470-482.  doi: 10.1109/TAC.2004.825641.  Google Scholar

[13]

J. P. HespanhaD. LiberzonD. Angeli and E. D. Songtag, Nonlinear norm-observability notions and stability of switched system, IEEE Trans. Automat. Control, 50 (2005), 154-168.  doi: 10.1109/TAC.2004.841937.  Google Scholar

[14]

J. P. Hespanha and A. S. Morse, Stability of switched systems by average dwell time, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 1999. doi: 10.1109/CDC.1999.831330.  Google Scholar

[15]

I. Hiskens, Stability of hybrid system limit cycles: Application to the compass gait biped robot, Proceeding of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA: IEEE, 2001. doi: 10.1109/CDC.2001.980200.  Google Scholar

[16]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences, 81 (1984), 3088-3092.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[17]

D. Jeon and M. Tomizuka, Learning hybrid force and position control of robot manipulators, Proceedings 1992 IEEE International Conference on Robotics and Automation, 9 (1993), 423-431.  doi: 10.1109/ROBOT.1992.220146.  Google Scholar

[18]

M. Johansson and A. Rantzer, Computation of piecewise quadratic Lyapunov functions for hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 555-559.  doi: 10.1109/9.664157.  Google Scholar

[19]

S. H. LeeT. H. Kim and J. T. Lim, A new stability of switched systems, Automatica, 36 (2000), 917-922.  doi: 10.1016/S0005-1098(99)00208-3.  Google Scholar

[20]

S. M. LenhartT. I. Seidman and J. Yong, Optimal control of a bioreactor with modal switching, Math. Models Methods Appl. Sci., 11 (2001), 993-949.  doi: 10.1142/S0218202501001185.  Google Scholar

[21]

B. LennartsonM. Tittus and B. Egardt, Hybrid systems in process control, Proceedings of 1994 33rd IEEE Conference on Decision and Control, 16 (2002), 45-56.  doi: 10.1109/CDC.1994.411706.  Google Scholar

[22]

H. LiY. Peng and K. Wu, Properties of solution for the nonlinear on-off switched differential equation with switching at variable times, Nonlinear Dynamics, 103 (2021), 2287-2298.   Google Scholar

[23]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhuser, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[24]

D. Liberzon, Switching in Systems and Control, Systems & Control: Foundations & Applications. Birkháuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[25]

D. Liberzon, Switched systems, Handbook of Networked and Embedded Control Systems, (2005), 559–574. doi: 10.1007/0-8176-4404-0_24.  Google Scholar

[26]

C. LiuZ. YangD. Sun and X. Liu, Stability of variable-time switched systems, Arab. J. Sci. Eng., 42 (2017), 2971-2980.  doi: 10.1007/s13369-017-2476-4.  Google Scholar

[27]

C. LiuZ. YangD. SunX. Liu and W. Liu, Stability of switched neural networks with time-varying delays, Neural Computing and Applications, 30 (2018), 2229-2244.  doi: 10.1007/s00521-016-2805-7.  Google Scholar

[28]

S. Liu and D. Liberzon, Global stability and asymptotic gain imply input-to-state stability for state-dependent switched systems, 2018 IEEE Conference on Decision and Control, (2018) 17–19. doi: 10.1109/CDC.2018.8619364.  Google Scholar

[29]

A. S. Morse, Supervisory control of families of linear set-point controllers-part 1. Exact matching, IEEE Trans. Automat. Control, 41 (1996), 1413-1431.  doi: 10.1109/9.539424.  Google Scholar

[30]

U. Oberst, Stability and stabilization of multidimensional input/Output systems, SIAM J. Control Optim., 45 (2006), 1467-1507.  doi: 10.1137/050639004.  Google Scholar

[31]

P. Peleties and R. DeCarlo, Asymptotic stability of m-switched systems using lyapunov-like functions, 1991 American Control Conference, 2 (1991), 1679-1684.  doi: 10.23919/ACC.1991.4791667.  Google Scholar

[32]

S. R. Sanders and G. C. Verghese, Lyapunov-based control for switched power converters, IEEE Transactions on Power Electronics, 7 (1992), 17-24.   Google Scholar

[33]

A. N. Shiryayev, Optimal Stopping Rules, Spring-Verlay, 1978.  Google Scholar

[34]

R. ShortenF. WirthO. MasonW. Kai and C. King, Stability criteria for switched and hybrid systems, SIAM Rev., 49 (2007), 545-592.  doi: 10.1137/05063516X.  Google Scholar

[35]

S. Stojanovic and J. Yong, Optimal switching for partial differential equations Ⅰ, Ⅱ, J. Math. Anal. Appl., 138 (1989), 418-438.  doi: 10.1016/0022-247X(89)90301-6.  Google Scholar

[36]

Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Springer, 2005. Google Scholar

[37]

F. A. Wyczalek, Hybrid electric vehicles: Year 2000 status, IEEE Aerospace and Electronic Systems Magazine, 16 (2001), 15-25.  doi: 10.1109/62.911316.  Google Scholar

[38]

G. ZhaiB. Hu and K. Yasuda, Stability analysis of switched with stable and unstable subsystems: An average dwell time approach, Internat. J. Systems Sci., 32 (2001), 1055-1061.  doi: 10.1080/00207720116692.  Google Scholar

[39]

G. Zhang and Y. Shen, Novel conditions on exponential stability of a class of delayed neural networks with state-dependent switching, Neural Networks, 71 (2015), 55-61.  doi: 10.1016/j.neunet.2015.07.016.  Google Scholar

[40]

X. ZhangC. Li and T. Huang, Hybrid impulsive and switching Hopfield neural networks with state-dependent impulses, Neural Networks, 93 (2017), 176-184.  doi: 10.1016/j.neunet.2017.04.009.  Google Scholar

show all references

References:
[1]

J. L. Aguilar and R. A. Garcia, An extension of LaSalle's invariance principle for switched systems, Systems Control Lett., 55 (2006), 376-384.  doi: 10.1016/j.sysconle.2005.07.009.  Google Scholar

[2]

L. I. Allerhand and U. Shaked, Stability of stochastic nonlinear systems with state-dependent switching, IEEE Transactions on Automatic Control, 58 (2013), 994-1001. doi: 10.1109/TAC.2013.2246094.  Google Scholar

[3]

J. BaekC. Kang and W. Kim, Practical approach for developing lateral motion control of autonomous lane change system, Applied Sciences, 10 (2020), 31-43.  doi: 10.3390/app10093143.  Google Scholar

[4]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.  Google Scholar

[5]

R. W. Brockett, Hybrid models for motion control systems, in essays on control: Perspectives in the theory and its applications, Progr. Systems Control Theory, 14 (1993), 29-53.   Google Scholar

[6]

C. Cai and A. Teel, Robust input-to-state stability for hybrid systems, SIAM J. Control Optim., 51 (2013), 1651-1678.  doi: 10.1137/110824747.  Google Scholar

[7]

I. Capuzzo Dolcetta and L. C. Evans, Optimal switching for ordinary differential equations, SIAM J. Control Optim., 22 (1984), 143-161.  doi: 10.1137/0322011.  Google Scholar

[8]

J. H. B. Deane and D. C. Hamill, Instability, subharmonics, and chaos in power electronic systems, 20th Annual IEEE Power Electronics Specialists Conference, 5 (1990), 260-268.  doi: 10.1109/PESC.1989.48470.  Google Scholar

[9]

S. EngellS. KowalewskiC. Schulz and O. Stursberg, Continuous-discrete interactions in chemical processing plants, Proceedings of IEEE, 88 (2000), 1050-1068.  doi: 10.1109/5.871308.  Google Scholar

[10]

L. C. Evans and A. Friedman, Optimal stochastic switching and the Dirichlet problem for the Bellman equation, Trans. Amer. Math. Soc., 253 (1979), 365-389.  doi: 10.1090/S0002-9947-1979-0536953-4.  Google Scholar

[11]

J. Ezzine and A. H. Haddad, On the controllability and observability of hybrid systems, Internat. J. Control, 49 (1989), 2045-2055.  doi: 10.1080/00207178908559761.  Google Scholar

[12]

J. P. Hespanha, Uniform stability of switched linear systems: Extensions of Lasalle's invariance principle, IEEE Trans. Automat. Control, 49 (2004), 470-482.  doi: 10.1109/TAC.2004.825641.  Google Scholar

[13]

J. P. HespanhaD. LiberzonD. Angeli and E. D. Songtag, Nonlinear norm-observability notions and stability of switched system, IEEE Trans. Automat. Control, 50 (2005), 154-168.  doi: 10.1109/TAC.2004.841937.  Google Scholar

[14]

J. P. Hespanha and A. S. Morse, Stability of switched systems by average dwell time, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 1999. doi: 10.1109/CDC.1999.831330.  Google Scholar

[15]

I. Hiskens, Stability of hybrid system limit cycles: Application to the compass gait biped robot, Proceeding of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA: IEEE, 2001. doi: 10.1109/CDC.2001.980200.  Google Scholar

[16]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proceedings of the National Academy of Sciences, 81 (1984), 3088-3092.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[17]

D. Jeon and M. Tomizuka, Learning hybrid force and position control of robot manipulators, Proceedings 1992 IEEE International Conference on Robotics and Automation, 9 (1993), 423-431.  doi: 10.1109/ROBOT.1992.220146.  Google Scholar

[18]

M. Johansson and A. Rantzer, Computation of piecewise quadratic Lyapunov functions for hybrid systems, IEEE Trans. Automat. Control, 43 (1998), 555-559.  doi: 10.1109/9.664157.  Google Scholar

[19]

S. H. LeeT. H. Kim and J. T. Lim, A new stability of switched systems, Automatica, 36 (2000), 917-922.  doi: 10.1016/S0005-1098(99)00208-3.  Google Scholar

[20]

S. M. LenhartT. I. Seidman and J. Yong, Optimal control of a bioreactor with modal switching, Math. Models Methods Appl. Sci., 11 (2001), 993-949.  doi: 10.1142/S0218202501001185.  Google Scholar

[21]

B. LennartsonM. Tittus and B. Egardt, Hybrid systems in process control, Proceedings of 1994 33rd IEEE Conference on Decision and Control, 16 (2002), 45-56.  doi: 10.1109/CDC.1994.411706.  Google Scholar

[22]

H. LiY. Peng and K. Wu, Properties of solution for the nonlinear on-off switched differential equation with switching at variable times, Nonlinear Dynamics, 103 (2021), 2287-2298.   Google Scholar

[23]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhuser, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[24]

D. Liberzon, Switching in Systems and Control, Systems & Control: Foundations & Applications. Birkháuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[25]

D. Liberzon, Switched systems, Handbook of Networked and Embedded Control Systems, (2005), 559–574. doi: 10.1007/0-8176-4404-0_24.  Google Scholar

[26]

C. LiuZ. YangD. Sun and X. Liu, Stability of variable-time switched systems, Arab. J. Sci. Eng., 42 (2017), 2971-2980.  doi: 10.1007/s13369-017-2476-4.  Google Scholar

[27]

C. LiuZ. YangD. SunX. Liu and W. Liu, Stability of switched neural networks with time-varying delays, Neural Computing and Applications, 30 (2018), 2229-2244.  doi: 10.1007/s00521-016-2805-7.  Google Scholar

[28]

S. Liu and D. Liberzon, Global stability and asymptotic gain imply input-to-state stability for state-dependent switched systems, 2018 IEEE Conference on Decision and Control, (2018) 17–19. doi: 10.1109/CDC.2018.8619364.  Google Scholar

[29]

A. S. Morse, Supervisory control of families of linear set-point controllers-part 1. Exact matching, IEEE Trans. Automat. Control, 41 (1996), 1413-1431.  doi: 10.1109/9.539424.  Google Scholar

[30]

U. Oberst, Stability and stabilization of multidimensional input/Output systems, SIAM J. Control Optim., 45 (2006), 1467-1507.  doi: 10.1137/050639004.  Google Scholar

[31]

P. Peleties and R. DeCarlo, Asymptotic stability of m-switched systems using lyapunov-like functions, 1991 American Control Conference, 2 (1991), 1679-1684.  doi: 10.23919/ACC.1991.4791667.  Google Scholar

[32]

S. R. Sanders and G. C. Verghese, Lyapunov-based control for switched power converters, IEEE Transactions on Power Electronics, 7 (1992), 17-24.   Google Scholar

[33]

A. N. Shiryayev, Optimal Stopping Rules, Spring-Verlay, 1978.  Google Scholar

[34]

R. ShortenF. WirthO. MasonW. Kai and C. King, Stability criteria for switched and hybrid systems, SIAM Rev., 49 (2007), 545-592.  doi: 10.1137/05063516X.  Google Scholar

[35]

S. Stojanovic and J. Yong, Optimal switching for partial differential equations Ⅰ, Ⅱ, J. Math. Anal. Appl., 138 (1989), 418-438.  doi: 10.1016/0022-247X(89)90301-6.  Google Scholar

[36]

Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Springer, 2005. Google Scholar

[37]

F. A. Wyczalek, Hybrid electric vehicles: Year 2000 status, IEEE Aerospace and Electronic Systems Magazine, 16 (2001), 15-25.  doi: 10.1109/62.911316.  Google Scholar

[38]

G. ZhaiB. Hu and K. Yasuda, Stability analysis of switched with stable and unstable subsystems: An average dwell time approach, Internat. J. Systems Sci., 32 (2001), 1055-1061.  doi: 10.1080/00207720116692.  Google Scholar

[39]

G. Zhang and Y. Shen, Novel conditions on exponential stability of a class of delayed neural networks with state-dependent switching, Neural Networks, 71 (2015), 55-61.  doi: 10.1016/j.neunet.2015.07.016.  Google Scholar

[40]

X. ZhangC. Li and T. Huang, Hybrid impulsive and switching Hopfield neural networks with state-dependent impulses, Neural Networks, 93 (2017), 176-184.  doi: 10.1016/j.neunet.2017.04.009.  Google Scholar

[1]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[2]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[3]

Moussa Balde, Ugo Boscain. Stability of planar switched systems: The nondiagonalizable case. Communications on Pure & Applied Analysis, 2008, 7 (1) : 1-21. doi: 10.3934/cpaa.2008.7.1

[4]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

[5]

Jochen Bröcker. Existence and uniqueness for variational data assimilation in continuous time. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021050

[6]

Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185

[7]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[8]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control & Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[9]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[10]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[11]

Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171

[12]

Gechun Liang, Wei Wei. Optimal switching at Poisson random intervention times. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1483-1505. doi: 10.3934/dcdsb.2016008

[13]

Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure & Applied Analysis, 2003, 2 (2) : 187-209. doi: 10.3934/cpaa.2003.2.187

[14]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[15]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[16]

Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273

[17]

Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469

[18]

Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419

[19]

Ji-Bo Wang, Bo Zhang, Hongyu He. A unified analysis for scheduling problems with variable processing times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021008

[20]

Thomas Kruse, Mikhail Urusov. Approximating exit times of continuous Markov processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3631-3650. doi: 10.3934/dcdsb.2020076

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (70)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]