
Previous Article
On the spatial central configurations of the 5body problem and their bifurcations
 DCDSS Home
 This Issue

Next Article
Symbolic dynamics of the elliptic rectilinear restricted 3body problem
Random walk in the threebody problem and applications
1.  Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, United States 
[1] 
Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the crisscross orbit in the equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2016, 36 (11) : 59715991. doi: 10.3934/dcds.2016062 
[2] 
Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the threebody problem. Conference Publications, 2011, 2011 (Special) : 11581166. doi: 10.3934/proc.2011.2011.1158 
[3] 
KuoChang Chen. On ChencinerMontgomery's orbit in the threebody problem. Discrete & Continuous Dynamical Systems  A, 2001, 7 (1) : 8590. doi: 10.3934/dcds.2001.7.85 
[4] 
Abimael Bengochea, Manuel Falconi, Ernesto PérezChavela. Horseshoe periodic orbits with one symmetry in the general planar threebody problem. Discrete & Continuous Dynamical Systems  A, 2013, 33 (3) : 9871008. doi: 10.3934/dcds.2013.33.987 
[5] 
Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar threebody problem. Discrete & Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 569595. doi: 10.3934/dcdsb.2008.10.569 
[6] 
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted threebody problem. Discrete & Continuous Dynamical Systems  A, 1995, 1 (4) : 463474. doi: 10.3934/dcds.1995.1.463 
[7] 
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic threebody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 17631787. doi: 10.3934/dcds.2017074 
[8] 
Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved threebody problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems  A, 2013, 33 (3) : 11571175. doi: 10.3934/dcds.2013.33.1157 
[9] 
Mitsuru Shibayama. Nonintegrability of the collinear threebody problem. Discrete & Continuous Dynamical Systems  A, 2011, 30 (1) : 299312. doi: 10.3934/dcds.2011.30.299 
[10] 
Richard Moeckel. A proof of Saari's conjecture for the threebody problem in $\R^d$. Discrete & Continuous Dynamical Systems  S, 2008, 1 (4) : 631646. doi: 10.3934/dcdss.2008.1.631 
[11] 
Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted threebody problem. Discrete & Continuous Dynamical Systems  A, 2014, 34 (12) : 52295245. doi: 10.3934/dcds.2014.34.5229 
[12] 
Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear threebody problem. Discrete & Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 609620. doi: 10.3934/dcdsb.2008.10.609 
[13] 
Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 379392. doi: 10.3934/dcdss.2009.2.379 
[14] 
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2018, 38 (4) : 21872206. doi: 10.3934/dcds.2018090 
[15] 
Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (7) : 39894018. doi: 10.3934/dcds.2017169 
[16] 
JeanBaptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted threebody control. Conference Publications, 2011, 2011 (Special) : 229239. doi: 10.3934/proc.2011.2011.229 
[17] 
Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted threebody models for the Trojan motion. Discrete & Continuous Dynamical Systems  A, 2004, 11 (4) : 843854. doi: 10.3934/dcds.2004.11.843 
[18] 
Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 12791288. doi: 10.3934/proc.2011.2011.1279 
[19] 
Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral sixbody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 19031922. doi: 10.3934/dcds.2017080 
[20] 
YongKum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441458. doi: 10.3934/krm.2012.5.441 
2016 Impact Factor: 0.781
Tools
Metrics
Other articles
by authors
[Back to Top]