• Previous Article
    Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction
  • DCDS-S Home
  • This Issue
  • Next Article
    On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition
September  2009, 2(3): 449-471. doi: 10.3934/dcdss.2009.2.449

Singularly non-autonomous semilinear parabolic problems with critical exponents

1. 

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil

2. 

Departamento de Matemática, Universidade Federal de São Carlos, 13565-905 São Carlos SP, Brazil

Received  September 2008 Revised  December 2008 Published  June 2009

In this work we consider initial value problems of the form

$\frac{dx}{dt} + A(t)x = f(t,x)$
$x(\tau)=x_0,$

in a Banach space $X$ where $A(t):D\subset X\to X$ is a linear, closed and unbounded operator which is sectorial for each $t$. We show local well posedness for the case when the nonlinearity $f$ grows critically. Applications to semilinear parabolic equations and strongly damped wave equations are considered.

Citation: Alexandre Nolasco de Carvalho, Marcelo J. D. Nascimento. Singularly non-autonomous semilinear parabolic problems with critical exponents. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 449-471. doi: 10.3934/dcdss.2009.2.449
[1]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[2]

Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270

[3]

Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations & Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026

[4]

Mustapha Mokhtar-Kharroubi. On permanent regimes for non-autonomous linear evolution equations in Banach spaces with applications to transport theory. Kinetic & Related Models, 2010, 3 (3) : 473-499. doi: 10.3934/krm.2010.3.473

[5]

Cung The Anh, Le Van Hieu, Nguyen Thieu Huy. Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 483-503. doi: 10.3934/dcds.2013.33.483

[6]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[7]

Hannes Meinlschmidt, Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evolution Equations & Control Theory, 2016, 5 (1) : 147-184. doi: 10.3934/eect.2016.5.147

[8]

Aníbal Rodríguez-Bernal, Alejandro Vidal–López. Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 537-567. doi: 10.3934/dcds.2007.18.537

[9]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[10]

Shengfan Zhou, Linshan Wang. Kernel sections for damped non-autonomous wave equations with critical exponent. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 399-412. doi: 10.3934/dcds.2003.9.399

[11]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure & Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[12]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[13]

Roberta Fabbri, Russell Johnson, Carmen Núñez. On the Yakubovich frequency theorem for linear non-autonomous control processes. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 677-704. doi: 10.3934/dcds.2003.9.677

[14]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[15]

Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves, Jacson Simsen. Non-autonomous reaction-diffusion equations with variable exponents and large diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1485-1510. doi: 10.3934/dcdsb.2018217

[16]

Barbara Bianconi, Francesca Papalini. Non-autonomous boundary value problems on the real line. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 759-776. doi: 10.3934/dcds.2006.15.759

[17]

Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2499-2526. doi: 10.3934/dcdsb.2018065

[18]

Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial & Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411

[19]

Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193

[20]

Felipe Rivero. Time dependent perturbation in a non-autonomous non-classical parabolic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 209-221. doi: 10.3934/dcdsb.2013.18.209

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

[Back to Top]