\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Breather-mediated energy transfer in proteins

Abstract / Introduction Related Papers Cited by
  • In this paper we investigate how energy is redistributed across protein structures, following localized kicks, within the framework of a nonlinear network model. We show that energy is directed most of the times to a few specific sites, systematically within the stiffest regions. This effect is sharpened as the energy of the kicks is increased, with fractions of transferred energy as high as 70% already for kicks above $20$ kcal/mol. Remarkably, we show that such site-selective, high-yield transfers mark the spontaneous formation of spatially localized, time-periodic vibrations at the target sites, acting as efficient energy-collecting centers. A comparison of our simulations with a previously developed theory reveals that such energy-pinning modes are discrete breathers, able to carry energy across the structure in an quasi-coherent fashion by jumping from site to site.
    Mathematics Subject Classification: Primary: 70-XX, 37-XX, 92-XX; Secondary: 70K75, 34C15, 37N25, 92C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdullaev, O. Bang and M. P. Sorensen (eds.), "Nonlinearity and Disorder: Theory and Applications," vol. 45, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.

    [2]

    J. F. R. Archilla, Yu. B. Gaididei, P. L. Christiansen and J. Cuevas, Stationary and moving breathers in a simplified model of curved alpha-helix proteins, Journal of Physics A: Mathematical and General, 35 (2002), 8885-8902.doi: 10.1088/0305-4470/35/42/301.

    [3]

    S. Aubry, Discrete breathers: Localization and transfer of energy in discrete hamiltonian nonlinear systems, Physica D: Nonlinear Phenomena, 216 (2006), 1-30.doi: 10.1016/j.physd.2005.12.020.

    [4]

    I. Bahar, A. R. Atilgan and B. Erman, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Fold. Des., 2 (1997), 173-181.doi: 10.1016/S1359-0278(97)00024-2.

    [5]

    I. Bahar and Q. Cui (eds.), "Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems," C&H/CRC Mathematical & Computational Biology Series, vol. 9, CRC press, Boca Raton, 2005.

    [6]

    B. R. Brooks and M. Karplus, Harmonic dynamics of proteins: Normal modes and fluctuations in bovine pancreatic trypsin inhibitor, Proc. Natl. Acad. Sci. USA, 80 (1983), 6571-6575.doi: 10.1073/pnas.80.21.6571.

    [7]

    V. M. Burlakov, S. A. Kiselev and V. N. Pyrkov, Computer-simulation of intrinsic localized modes in one-dimensional and 2-dimensional anharmonic lattices, Physical Review B, 42 (1990), 4921-4927.doi: 10.1103/PhysRevB.42.4921.

    [8]

    F. Columbus (ed.), "Soft Condensed Matter. New Research," Nova Science Publishers, Inc., 2005.

    [9]

    T. Dauxois, R. Khomeriki, F. Piazza and S. Ruffo, The anti-FPU problem, Chaos, 15 (2005), 015110.doi: 10.1063/1.1854273.

    [10]

    T. Dauxois, A. Litvak-Hinenzon, R. MacKay and A. Spanoudaki (eds.), "Energy Localisation and Transfer in Crystals, Biomolecules and Josephson Arrays," Advanced Series in Nonlinear Dynamics, vol. 22, World Scientific, Singapore, 2004.

    [11]

    A. del Sol, C. J. Tsai, B. Y. Ma and R. Nussinov, The origin of allosteric functional modulation: Multiple pre-existing pathways, Structure, 17 (2009), 1042-1050.doi: 10.1016/j.str.2009.06.008.

    [12]

    F. d'Ovidio, H. G. Bohr and P.-A. Lindgård, Solitons on H-bonds in proteins, Journal of Physics: Condensed Matter, 15 (2003), S1699-S1707.doi: 10.1088/0953-8984/15/18/304.

    [13]

    F. d'Ovidio, H. G. Bohr and P.-A. Lindgrd, Analytical tools for solitons and periodic waves corresponding to phonons on lennard-jones lattices in helical proteins, Physical Review E, 71 (2005), 026606-9.doi: 10.1103/PhysRevE.71.026606.

    [14]

    J. J. Falke, Enzymology: A moving story, Science, 295 (2002), 1480-1481.doi: 10.1126/science.1069823.

    [15]

    S. Flach and G. Mutschke, Slow relaxation and phase-space properties of a conservative system with many degrees of freedom, Physical Review E, 49 (1994), 5018-5024.doi: 10.1103/PhysRevE.49.5018.

    [16]

    S. Flach and C. R. Willis, Discrete breathers, Physics Reports, 295 (1998), 181-264.doi: 10.1016/S0370-1573(97)00068-9.

    [17]

    S. Flach and A. V. Gorbach, Discrete breathers - advances in theory and applications, Physics Reports, 467 (2008), 1-116.doi: 10.1016/j.physrep.2008.05.002.

    [18]

    S. Hayward, A. Kitao and N. Go, Harmonicity and anharmonicity in protein dynamics: A normal mode analysis and principal component analysis, Proteins, 23 (1995), 177-186.doi: 10.1002/prot.340230207.

    [19]

    K. A. Henzler-Wildman, M. Lei, V. Thai, S. Jordan Kerns, M. Karplus and D. Kern, A hierarchy of timescales in protein dynamics is linked to enzyme catalysis, Nature, 450 (2007), 913-916.doi: 10.1038/nature06407.

    [20]

    K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins, 33 (1998), 417-429.doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8.

    [21]

    B. Juanico, Y.-H. Sanejouand, F. Piazza and P. De Los Rios, Discrete breathers in nonlinear network models of proteins, Phys. Rev. Lett., 99 (2007), 238104.doi: 10.1103/PhysRevLett.99.238104.

    [22]

    G. Kopidakis, S. Aubry and G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), 165501.doi: 10.1103/PhysRevLett.87.165501.

    [23]

    D. M. Leitner, Anharmonic decay of vibrational states in helical peptides, coils, and one-dimensional glasses, Journal of Physical Chemistry A, 106 (2002), 10870-10876.doi: 10.1021/jp0206119.

    [24]

    D. M. Leitner, Vibrational energy transfer in helices, Phys. Rev. Lett., 87 (2001), 188102.doi: 10.1103/PhysRevLett.87.188102.

    [25]

    M. Levitt, C. Sander and P. S. Stern, Normal-mode dynamics of a protein: Bovine pancreatic trypsin inhibitor, Int. J. Quant. Chem., 10 (1983), 181-199.

    [26]

    R. M. Levy, D. Perahia and M. Karplus, Molecular dynamics of an alpha-helical polypeptide: Temperature dependance and deviation from harmonic behavior, Proc. Natl. Acad. Sci. USA, 79 (1982), 1346-1350.doi: 10.1073/pnas.79.4.1346.

    [27]

    K. Moritsugu, O. Miyashita and A. Kidera, Vibrational energy transfer in a protein molecule, Physical Review Letters, 85 (2000), 3970-3973.doi: 10.1103/PhysRevLett.85.3970.

    [28]

    T. Noguti and N. Go, Collective variable description of small-amplitude conformational fluctuations in a globular protein, Nature, 296 (1982), 776-778.doi: 10.1038/296776a0.

    [29]

    M. Peyrard, "Nonlinear Excitations in Biomolecules," Springer, Berlin, 1995.

    [30]

    M. Peyrard, The pathway to energy localization in nonlinear lattices, Physica D: Nonlinear Phenomena, 119 (1998), 184-199.doi: 10.1016/S0167-2789(98)00079-7.

    [31]

    F. Piazza and Y.-H. Sanejouand, Discrete breathers in protein structures, Phys. Biol, 5 (2008), 026001.doi: 10.1088/1478-3975/5/2/026001.

    [32]

    F. Piazza and Y.-H. Sanejouand, Long-range energy transfer in proteins, Physical Biology, 6 (2009), 046014.doi: 10.1088/1478-3975/6/4/046014.

    [33]

    K. O. Rasmussen, D. Cai, A. R. Bishop and N. Gronbech-Jensen, Localization in a nonlinear disordered system, Europhysics Letters, 47 (1999), 421-427.doi: 10.1209/epl/i1999-00405-1.

    [34]

    J. Ross, Energy transfer from adenosine triphosphate, The Journal of Physical Chemistry B, 110 (2006), 6987-6990.doi: 10.1021/jp0556862.

    [35]

    M. Rueda, P. Chacon and M. Orozco, Thorough validation of protein normal mode analysis: A comparative study with essential dynamics, Structure, 15 (2007), 565-575.doi: 10.1016/j.str.2007.03.013.

    [36]

    B. Rumpf, Growth and erosion of a discrete breather interacting with rayleigh-jeans distributed phonons, EPL, 78 (2007), 26001.doi: 10.1209/0295-5075/78/26001.

    [37]

    S. Sacquin-Mora, E. Laforet and R. Lavery, Locating the active sites of enzymes using mechanical properties, Proteins, 67 (2007), 350-359.doi: 10.1002/prot.21353.

    [38]

    D. E. Sagnella, J. E. Straub and D. Thirumalai, Time scales and pathways for kinetic energy relaxation in solvated proteins: Application to carbonmonoxy myoglobin, J. Chem. Phys., 113 (2000), 7702-7711.doi: 10.1063/1.1313554.

    [39]

    K. W. Sandusky, J. B. Page and K. E. Schmidt, Stability and motion of intrinsic localized modes in nonlinear periodic lattices, Physical Review B, 46 (1992), 6161-6168.doi: 10.1103/PhysRevB.46.6161.

    [40]

    M. Sato and A. Sievers, Experimental and numerical exploration of intrinsic localized modes in an atomic lattice, Journal of Biological Physics, 35 (2009), 57-72.doi: 10.1007/s10867-009-9135-2.

    [41]

    A. Scott, Davydov's soliton, Physics Reports, 217 (1992), 1-67.doi: 10.1016/0370-1573(92)90093-F.

    [42]

    E. Segré (ed.), "Collected Papers of Enrico Fermi," University of Chicago Press, Chicago, 1965.

    [43]

    F. Tama and Y. H. Sanejouand, Conformational change of proteins arising from normal mode calculations, Protein Engineering Design and Selection, 14 (2001), 1-6.doi: 10.1093/protein/14.1.1.

    [44]

    M. M. Tirion, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis, Physical Review Letters, 77 (1996), 1905-1908.doi: 10.1103/PhysRevLett.77.1905.

    [45]

    C. J. Tsai, A. del Sol and R. Nussinov, Allostery: Absence of a change in shape does not imply that allostery is not at play, Journal of Molecular Biology, 378 (2008), 1-11.doi: 10.1016/j.jmb.2008.02.034.

    [46]

    C. J. Tsai, A. Del Sol and R. Nussinov, Protein allostery, signal transmission and dynamics: A classification scheme of allosteric mechanisms, Molecular Biosystems, 5 (2009), 207-216.doi: 10.1039/b819720b.

    [47]

    P. C. Whitford, J. N. Onuchic and P. G. Wolynes, Energy landscape along an enzymatic reaction trajectory: Hinges or cracks?, HFSP Journal, 2 (2008), 61-64.doi: 10.2976/1.2894846.

    [48]

    S. Woutersen and P. Hamm, Nonlinear two-dimensional vibrational spectroscopy of peptides, Journal of Physics: Condensed Matter, 14 (2002), R1035-R1062.doi: 10.1088/0953-8984/14/39/202.

    [49]

    A. Xie, A. F. G. van der Meer and R. H. Austin, Excited-state lifetimes of far-infrared collective modes in proteins, Physical Review Letters, 88 (2001), 018102.doi: 10.1103/PhysRevLett.88.018102.

    [50]

    A. Xie, L. van der Meer, W. Hoff and R. H. Austin, Long-lived amide i vibrational modes in myoglobin, Physical Review Letters, 84 (2000), 5435-5438.doi: 10.1103/PhysRevLett.84.5435.

    [51]

    L. W. Yang and I. Bahar, Coupling between catalytic site and collective dynamics: A requirement for mechanochemical activity of enzymes, Structure, 13 (2005), 893-904.doi: 10.1016/j.str.2005.03.015.

    [52]

    X. Yu and D. M. Leitner, Vibrational energy transfer and heat conduction in a protein, Journal of Physical Chemistry B, 107 (2003), 1698-1707.doi: 10.1021/jp026462b.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return