June  2011, 4(3): 615-622. doi: 10.3934/dcdss.2011.4.615

Stability of solutions for nonlinear wave equations with a positive--negative damping

1. 

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena, Via Roma 56, 53100 Siena

2. 

Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

Received  March 2009 Revised  February 2010 Published  November 2010

We prove a stability result for damped nonlinear wave equations, when the damping changes sign and the nonlinear term satisfies a few natural assumptions.
Citation: Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615
References:
[1]

A. Benaddi and B. Rao, Energy decay rate of wave equations with indefinite damping,, J. Differential Equations, 161 (2000), 337. Google Scholar

[2]

C. W. de Silva, "Vibration and Shock Handbook,", Mechanical Engineering, (2005). doi: doi:10.1201/9781420039894. Google Scholar

[3]

G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations,, SIAM J. Control Optim., 47 (2008), 2520. Google Scholar

[4]

P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping,, J. Differential Equations, 132 (1996), 338. Google Scholar

[5]

A. Haraux, P. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second order evolution equations,, SIAM J. Control and Opt., 43 (2005), 2089. Google Scholar

[6]

L. Hatvani and T. Krisztin, Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping,, Differential Integral Equations, 10 (1997), 265. Google Scholar

[7]

S. Konabe and T. Nikuni, Coarse-grained finite-temperature theory for the bose condensate in optical lattices,, J. Low Temp. Phys., 150 (2008), 12. doi: doi:10.1007/s10909-007-9517-4. Google Scholar

[8]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Review, 32 (1990), 537. Google Scholar

[9]

H. A. Levine, S. R. Park and J. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation,, J. Math. Anal. Appl., 228 (1998), 181. Google Scholar

[10]

K. Liu, B. Rao and X. Zhang, Stabilization of the wave equations with potential and indefinite damping,, J. Math. Anal. Appl., 269 (2002), 747. Google Scholar

[11]

A. Marino and D. Mugnai, Asymptotically critical points and their multiplicity,, Topol. Methods Nonlinear Anal., 19 (2002), 29. Google Scholar

[12]

A. Marino and D. Mugnai, Asymptotical multiplicity and some reversed variational inequalities,, Topol. Methods Nonlinear Anal., 20 (2002), 43. Google Scholar

[13]

P. Martinez and J. Vancostenoble, Stabilization of the wave equation by on-off and positive-negative feedbacks,, ESAIM Control Optim. Calc. Var., 7 (2002), 335. Google Scholar

[14]

D. Mugnai, On a "reversed" variational inequality,, Topol. Methods Nonlinear Anal., (2001), 321. Google Scholar

[15]

P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators,, SIAM J. Math. Anal., 25 (1994), 815. Google Scholar

[16]

P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. II,, J. Differential Equations, 113 (1994), 505. Google Scholar

[17]

G. Somieski, Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods,, Aerosp. Sci. Technol., 1 (1997), 545. Google Scholar

show all references

References:
[1]

A. Benaddi and B. Rao, Energy decay rate of wave equations with indefinite damping,, J. Differential Equations, 161 (2000), 337. Google Scholar

[2]

C. W. de Silva, "Vibration and Shock Handbook,", Mechanical Engineering, (2005). doi: doi:10.1201/9781420039894. Google Scholar

[3]

G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations,, SIAM J. Control Optim., 47 (2008), 2520. Google Scholar

[4]

P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping,, J. Differential Equations, 132 (1996), 338. Google Scholar

[5]

A. Haraux, P. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second order evolution equations,, SIAM J. Control and Opt., 43 (2005), 2089. Google Scholar

[6]

L. Hatvani and T. Krisztin, Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping,, Differential Integral Equations, 10 (1997), 265. Google Scholar

[7]

S. Konabe and T. Nikuni, Coarse-grained finite-temperature theory for the bose condensate in optical lattices,, J. Low Temp. Phys., 150 (2008), 12. doi: doi:10.1007/s10909-007-9517-4. Google Scholar

[8]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Review, 32 (1990), 537. Google Scholar

[9]

H. A. Levine, S. R. Park and J. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation,, J. Math. Anal. Appl., 228 (1998), 181. Google Scholar

[10]

K. Liu, B. Rao and X. Zhang, Stabilization of the wave equations with potential and indefinite damping,, J. Math. Anal. Appl., 269 (2002), 747. Google Scholar

[11]

A. Marino and D. Mugnai, Asymptotically critical points and their multiplicity,, Topol. Methods Nonlinear Anal., 19 (2002), 29. Google Scholar

[12]

A. Marino and D. Mugnai, Asymptotical multiplicity and some reversed variational inequalities,, Topol. Methods Nonlinear Anal., 20 (2002), 43. Google Scholar

[13]

P. Martinez and J. Vancostenoble, Stabilization of the wave equation by on-off and positive-negative feedbacks,, ESAIM Control Optim. Calc. Var., 7 (2002), 335. Google Scholar

[14]

D. Mugnai, On a "reversed" variational inequality,, Topol. Methods Nonlinear Anal., (2001), 321. Google Scholar

[15]

P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators,, SIAM J. Math. Anal., 25 (1994), 815. Google Scholar

[16]

P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. II,, J. Differential Equations, 113 (1994), 505. Google Scholar

[17]

G. Somieski, Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods,, Aerosp. Sci. Technol., 1 (1997), 545. Google Scholar

[1]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[2]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[3]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[4]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[5]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[6]

Abdullah Özbekler, A. Zafer. Second order oscillation of mixed nonlinear dynamic equations with several positive and negative coefficients. Conference Publications, 2011, 2011 (Special) : 1167-1175. doi: 10.3934/proc.2011.2011.1167

[7]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[8]

Yoshihiro Ueda, Tohru Nakamura, Shuichi Kawashima. Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space. Kinetic & Related Models, 2008, 1 (1) : 49-64. doi: 10.3934/krm.2008.1.49

[9]

Varga K. Kalantarov, Edriss S. Titi. Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1325-1345. doi: 10.3934/dcdsb.2018153

[10]

Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100-117. doi: 10.3934/proc.1998.1998.100

[11]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[12]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[13]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[14]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[15]

P. Fabrie, C. Galusinski, A. Miranville. Uniform inertial sets for damped wave equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 393-418. doi: 10.3934/dcds.2000.6.393

[16]

Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147

[17]

Bilgesu A. Bilgin, Varga K. Kalantarov. Non-existence of global solutions to nonlinear wave equations with positive initial energy. Communications on Pure & Applied Analysis, 2018, 17 (3) : 987-999. doi: 10.3934/cpaa.2018048

[18]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[19]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[20]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]