2011, 4(4): 825-831. doi: 10.3934/dcdss.2011.4.825

Shape optimization for Monge-Ampère equations via domain derivative

1. 

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Napoli

2. 

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cintia, Monte S. Angelo, I-80126 Napoli

Received  October 2009 Revised  January 2010 Published  November 2010

In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.
Citation: Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825
References:
[1]

A. Alvino, J. I. Diaz, P. L. Lions and G. Trombetti, Elliptic equations and Steiner symmetrization,, Comm. Pure Appl. Math., 49 (1996), 217. doi: doi:10.1002/(SICI)1097-0312(199603)49:3<217::AID-CPA1>3.0.CO;2-G.

[2]

B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geom., 43 (1996), 207.

[3]

B. Brandolini, C. Nitsch and C. Trombetti, New isoperimetric estimates for solutions to Monge-Ampére equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 26 (2009), 1265.

[4]

F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative,, Rend. Circ. Mat. Palermo (2), 51 (2002), 375. doi: doi:10.1007/BF02871848.

[5]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp\`ere equation,, Comm. Pure Appl. Math., 37 (1984), 369. doi: doi:10.1002/cpa.3160370306.

[6]

V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals,, C. R. Acad. Sci. Paris S\'er. I Math., 326 (1998), 549.

[7]

A. Henrot and E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions,, Arch. Ration. Mech. Anal., 169 (2003), 73. doi: doi:10.1007/s00205-003-0259-4.

[8]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique,", Math\'ematiques & Applications, 48 (2005).

[9]

C. M. Petty, Affine isoperimetric problems,, in, 440 (1985), 113.

[10]

R. C. Reilly, On the Hessian of a function and the curvatures of its graph,, Michigan Math. J., 20 (1973), 373.

[11]

R. Schneider, "Convex Bodies: The Brunn-Minkowski Theory,", Encyclopedia of Mathematics and its Applications, 44 (1993).

[12]

J. Sokolowski and J. P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).

[13]

G. Talenti, Elliptic equations and rearrangements,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3 (1976), 697.

[14]

G. Trombetti, Symmetrization methods for partial differential equations (Italian),, Boll. Un. Mat. Ital. B (8), 3 (2000), 601.

show all references

References:
[1]

A. Alvino, J. I. Diaz, P. L. Lions and G. Trombetti, Elliptic equations and Steiner symmetrization,, Comm. Pure Appl. Math., 49 (1996), 217. doi: doi:10.1002/(SICI)1097-0312(199603)49:3<217::AID-CPA1>3.0.CO;2-G.

[2]

B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geom., 43 (1996), 207.

[3]

B. Brandolini, C. Nitsch and C. Trombetti, New isoperimetric estimates for solutions to Monge-Ampére equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 26 (2009), 1265.

[4]

F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative,, Rend. Circ. Mat. Palermo (2), 51 (2002), 375. doi: doi:10.1007/BF02871848.

[5]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp\`ere equation,, Comm. Pure Appl. Math., 37 (1984), 369. doi: doi:10.1002/cpa.3160370306.

[6]

V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals,, C. R. Acad. Sci. Paris S\'er. I Math., 326 (1998), 549.

[7]

A. Henrot and E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions,, Arch. Ration. Mech. Anal., 169 (2003), 73. doi: doi:10.1007/s00205-003-0259-4.

[8]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique,", Math\'ematiques & Applications, 48 (2005).

[9]

C. M. Petty, Affine isoperimetric problems,, in, 440 (1985), 113.

[10]

R. C. Reilly, On the Hessian of a function and the curvatures of its graph,, Michigan Math. J., 20 (1973), 373.

[11]

R. Schneider, "Convex Bodies: The Brunn-Minkowski Theory,", Encyclopedia of Mathematics and its Applications, 44 (1993).

[12]

J. Sokolowski and J. P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).

[13]

G. Talenti, Elliptic equations and rearrangements,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3 (1976), 697.

[14]

G. Trombetti, Symmetrization methods for partial differential equations (Italian),, Boll. Un. Mat. Ital. B (8), 3 (2000), 601.

[1]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[2]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[3]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[4]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[5]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[6]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[7]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[8]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[9]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[10]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[11]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[12]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[13]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[14]

Marita Thomas. Uniform Poincaré-Sobolev and isoperimetric inequalities for classes of domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2741-2761. doi: 10.3934/dcds.2015.35.2741

[15]

Gleb G. Doronin, Nikolai A. Larkin. Kawahara equation in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 783-799. doi: 10.3934/dcdsb.2008.10.783

[16]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[17]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[18]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[19]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[20]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]