# American Institute of Mathematical Sciences

December  2012, 5(6): 1147-1194. doi: 10.3934/dcdss.2012.5.1147

## A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis

 1 Institute of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 293/294, D-69120 Heidelberg, Germany

Received  November 2011 Revised  March 2012 Published  August 2012

This article contains part of the material of four introductory lectures given at the 12th school Mathematical Theory in Fluid Mechanics'', Spring 2011, at Kácov, Czech Republic, on Numerical simulation of viscous flow: discretization, optimization and stability analysis''. In the first lecture on Numerical computation of incompressible viscous flow'', we discuss the Galerkin finite element method for the discretization of the Navier-Stokes equations for modeling laminar flow. Particular emphasis is put on the aspects pressure stabilization and truncation to bounded domains. In the second lecture on Goal-oriented adaptivity'', we introduce the concept underlying the Dual Weighted Residual (DWR) method for goal-oriented residual-based adaptivity in solving the Navier-Stokes equations. This approach is presented for stationary as well as nonstationary situations. In the third lecture on Optimal flow control'', we discuss the use of the DWR method for adaptive discretization in flow control and model calibration. Finally, in the fourth lecture on Numerical stability analysis'', we consider the numerical stability analysis of stationary flows employing the concepts of linearized stability and pseudospectrum.
Citation: Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147
##### References:
 [1] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis,, Comput. Methods Appl. Mech. Eng., 142 (1997), 1.  doi: 10.1016/S0045-7825(96)01107-3.  Google Scholar [2] W. Bangerth and R. Rannacher, "Adaptive Finite Element Methods for Differential Equations,", Lectures in Mathematics, (2003).   Google Scholar [3] R. Becker, An adaptive finite element method for the Stokes equations including control of the iteration error,, in Numerical Mathematics and Advanced Applications, (1997), 609.   Google Scholar [4] R. Becker, An optimal-control approach to a posteriori error estimation for finite element discretizations of the Navier-Stokes equations,, East-West J. Numer. Math., 9 (2000), 257.   Google Scholar [5] R. Becker, Mesh adaptation for stationary flow control,, J. Math. Fluid Mech., 3 (2001), 317.  doi: 10.1007/PL00000974.  Google Scholar [6] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projection,, Calcolo, 38 (2001), 363.  doi: 10.1007/s10092-001-8180-4.  Google Scholar [7] R. Becker, M. Braack, D. Meidner, R. Rannacher and B. Vexler, Adaptive finite element methods for PDE-constrained optimal control problems,, in Reactive Flow, (2006), 177.   Google Scholar [8] R. Becker, M. Braack, R. Rannacher and Th. Richter, Mesh and model adaptivity for flow problems,, in Reactive Flows, (2006), 47.   Google Scholar [9] R. Becker, V. Heuveline and R. Rannacher, An optimal control approach to adaptivity in computational fluid mechanics,, Int. J. Numer. Meth. Fluids, 40 (2001), 105.  doi: 10.1002/fld.269.  Google Scholar [10] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concepts,, SIAM J. Optimization Control, 39 (2000), 113.  doi: 10.1137/S0363012999351097.  Google Scholar [11] R. Becker and R. Rannacher, Finite element solution of the incompressible Navier-Stokes equations on anisotropically refined meshes,, Proc. Workshop Fast Solvers for Flow Problems, (1994).   Google Scholar [12] R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods,, Lecture at ENUMATH-95, (1995), 18.   Google Scholar [13] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples,, East-West J. Numer. Math., 4 (1996), 237.   Google Scholar [14] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods,, Acta Numer., 10 (2001), 1.  doi: 10.1017/S0962492901000010.  Google Scholar [15] R. Becker and B. Vexler, A posteriori error estimation for finite element discretization of parameter identification problems,, Numer. Math., 96 (2004), 435.  doi: 10.1007/s00211-003-0482-9.  Google Scholar [16] R. Becker, C. Johnson and R. Rannacher, Adaptive error control for multigrid finite element methods,, Computing, 55 (1995), 271.  doi: 10.1007/BF02238483.  Google Scholar [17] C. Bertsch and V. Heuveline, On multigrid methods for the eigenvalue computation of non-selfadjoint elliptic operators,, East-West J. Numer. Math., 8 (2000), 275.   Google Scholar [18] M. Besier and R. Rannacher, Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow,, Int. J. Numer. Meth. Fluids, (2011).   Google Scholar [19] M. Besier and W. Wollner, On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes,, Int. J. Numer. Methods Fluids, (2011).   Google Scholar [20] S. Bönisch, Th. Dunne and R. Rannacher, Lecture on numerical simulation of liquid-structure interaction,, in Hemodynamical Flows: Aspects of Modeling, (2007).   Google Scholar [21] M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors,, Multiscale Model. Simul., 1 (2003), 221.  doi: 10.1137/S1540345902410482.  Google Scholar [22] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen equations,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 853.  doi: 10.1016/j.cma.2006.07.011.  Google Scholar [23] M. Braack and R. Rannacher, "Adaptive Finite Element Methods for Low-Mach-Number Flows with Chemical Reactions,", Lecture Series 1999-03, (1999), 1999.   Google Scholar [24] M. Braack and Th. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements,, Computers and Fluids, 35 (2006), 372.  doi: 10.1016/j.compfluid.2005.02.001.  Google Scholar [25] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations,, Math. Comp., 27 (1973), 525.  doi: 10.1090/S0025-5718-1973-0366029-9.  Google Scholar [26] S. C. Brenner and R. L. Scott, "The Mathematical Theory of Finite Element Methods,", Springer, (1994).   Google Scholar [27] F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,", Springer, (1991).   Google Scholar [28] G. F. Carey and J. T. Oden, "Finite Elements, Computational Aspects, Vol III,", Prentice-Hall, (1984).   Google Scholar [29] A. J. Chorin, Numerical solution of the Navier-Stokes equations,, Math.Comp., 22 (1968), 745.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar [30] P. G. Ciarlet, "The Finite Element Methods for Elliptic Problems,", North-holland, (1978).   Google Scholar [31] Th. Dunne and R. Rannacher, Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation,, in Fluid-Structure Interaction: Modelling, (2006), 110.   Google Scholar [32] W. E and J. G. Liu, Projection method I: convergence and numerical boundary layers,, SIAM J. Numer. Anal., 32 (1995), 1017.  doi: 10.1137/0732047.  Google Scholar [33] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations,, Acta Numerica 1995 (A. Iserles, (1995), 105.   Google Scholar [34] M. Feistauer, "Mathematical Methods in Fluid Dynamics,", Longman Scientific&Technical, (1993).   Google Scholar [35] J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics,", Springer, (1996).   Google Scholar [36] L. P. Franca and S. L. Frey, Stabilized finite element methods: II The incompressible Navier-Stokes equations,, Comput. Methods Appl. Mech. Engrg., 99 (1992), 209.  doi: 10.1016/0045-7825(92)90041-H.  Google Scholar [37] S. Friedlander and D. Serre, "Handbuch for Mathematical Fluid Dynamics, Vol. 1/2,", North-Holland, (2002).   Google Scholar [38] G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. 1: Linearized Steady Problems, Vol. 2: Nonlinear Steady Problems,", Springer: Berlin-Heidelberg-New York, (1994).   Google Scholar [39] D. Gerecht, R. Rannacher and W. Wollner, Computational aspects of pseudospectra in hydrodynamic stability analysis,, J. Math. Fluid Mech., (2011).  doi: 10.1007/s00021-011-0085-7.  Google Scholar [40] M. B. Giles and E. Süli, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality,, in Acta Numerica 2002 (A. Iserles, (2002), 145.   Google Scholar [41] V. Girault and P.-A. Raviart, "Finite Element Methods for the Navier-Stokes Equations,", Springer, (1986).   Google Scholar [42] R. Glowinski, Finite element methods for incompressible viscous flow,, in Handbook of Numerical Analysis Volume IX: Numerical Methods for Fluids (Part 3) (P. G. Ciarlet and J. L. Lions, (2003).   Google Scholar [43] R. Glowinski, J. Hron, L. Rivkind and S. Turek, Numerical study of a modified time-stepping theta-scheme for incompressible flow simulations,, J. Scientific Comput., 28 (2006), 533.   Google Scholar [44] P. M. Gresho and R. L. Sani, "Incompressible Flow and the Finite Element Method,", John Wiley & Sons, (1998).   Google Scholar [45] V. Heuveline and R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems,, Adv. Comput. Math., 15 (2001), 1.  doi: 10.1023/A:1014291224961.  Google Scholar [46] V. Heuveline and R. Rannacher, Adaptive FE eigenvalue approximation with application to hydrodynamic stability analysis,, in Advances in Numerical Mathematics (W. Fitzgibbon et al., (2006), 109.   Google Scholar [47] J. G. Heywood, The Navier-Stokes equations: On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar [48] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part I: Regularity of solutions and second-order error estimates for spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275.  doi: 10.1137/0719018.  Google Scholar [49] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part II: Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750.  doi: 10.1137/0723049.  Google Scholar [50] J. G. Heywood and R. Rannacher, An analysis of stability concepts for the Navier-Stokes equations,, J. Reine Angew. Math., 372 (1986), 1.   Google Scholar [51] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part III: Smoothing property and higher-order error estimates for spatial discretization,, SIAM J. Numer. Anal., 25 (1988), 489.  doi: 10.1137/0725032.  Google Scholar [52] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part IV: Error analysis for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar [53] J. G Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations,, Int. J. Numer. Meth. Fluids, 22 (1996), 1.  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y.  Google Scholar [54] T. J. R. Hughes and A. N. Brooks, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation,, Comput. Meth. Appl. Mech. Engrg. 32 (1982), 32 (1982), 199.  doi: 10.1016/0045-7825(82)90071-8.  Google Scholar [55] T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation,, Comput. Meth. Appl. Mech. Engrg., 59 (1986), 85.  doi: 10.1016/0045-7825(86)90025-3.  Google Scholar [56] V. John, Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations,, Int. J. Numer. Meth. Fluids, 40 (2002), 775.  doi: 10.1002/fld.377.  Google Scholar [57] C. Johnson, S. Larsson, V. Thoméand L. B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data,, Math. Comp., 49 (1987), 331.  doi: 10.1090/S0025-5718-1987-0906175-1.  Google Scholar [58] C. Johnson, R. Rannacher and M. Boman, Numerics and hydrodynamic stability: Towards error control in CFD,, SIAM J. Numer. Anal., 32 (1995), 1058.  doi: 10.1137/0732048.  Google Scholar [59] S. Kracmar and J. Neustupa, Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities,, Z. Angew. Math. Mech., 74 (1994).   Google Scholar [60] O. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Gordon and Breach, (1969).   Google Scholar [61] M. Luskin and R. Rannacher, On the smoothing property of the Galerkin method for parabolic equations,, SIAM J. Numer. Anal., 19 (1981), 93.  doi: 10.1137/0719003.  Google Scholar [62] M. Luskin and R. Rannacher, On the smoothing property of the Crank-Nicolson scheme,, Appl. Anal., 14 (1982), 117.  doi: 10.1080/00036818208839415.  Google Scholar [63] L. Machiels, A. T. Patera and J. Peraire, Output bound approximation for partial differential equations, application to the incompressible Navier-Stokes equations,, in Industr. and Environm. Appl. of Direct and Large Eddy Numerical Simulation (S. Biringen, (1998).   Google Scholar [64] D. Meidner, "Adaptive Space-Time Finite Element Methods for Optimization Problems Governed by Nonlinear Parabolic Systems,", doctoral thesis, (2007).   Google Scholar [65] D. Meidner, R. Rannacher and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations,, J. Numer. Math., 17 (2009), 143.  doi: 10.1515/JNUM.2009.009.  Google Scholar [66] S. Müller-Urbaniak, "Eine Analyse des Zwischenschritt-$\theta$-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen,", doctoral thesis, (1993), 93.   Google Scholar [67] S. Müller, A. Prohl, R. Rannacher and S. Turek, Implicit time-discretization of the nonstationary incompressible Navier-Stokes equations,, in Proc. GAMM Seminar Fast Solvers for Flow Problems, (1994), 175.   Google Scholar [68] J. T. Oden, W. Wu and M. Ainsworth, An a posteriori error estimate for finite element approximations of the Navier-Stokes equations,, Comput. Methods Appl. Mech. Eng., 111 (1993), 185.  doi: 10.1016/0045-7825(94)90045-0.  Google Scholar [69] O. Pironneau, "Finite Element Methods for Fluids,", John Wiley, (1983).   Google Scholar [70] A. Prohl, "Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations,", Teubner, (1997).   Google Scholar [71] L. Quartapelle, "Numerical Solution of the Incompressible Navier-Stokes Equations,", Birkhäuser, (1993).   Google Scholar [72] R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations,, in Navier-Stokes Equations: Theory and Numerical Methods (J. G. Heywood et al., (1530), 167.   Google Scholar [73] R. Rannacher, Finite methods for the incompressible Navier-Stokes equations,, in Fundamental Directions in Mathematical Fluid Mechanics (G.P. Galdi et al., (2000), 191.   Google Scholar [74] R. Rannacher, Incompressible viscous flow,, in Encyclopedia of Computational Mechanics (E. Stein et al., (2004).   Google Scholar [75] R. Rannacher, Methods for numerical flow simulation,, in Hemodynamical Flows: Aspects of Modeling, (2007), 275.   Google Scholar [76] R. Rannacher, Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction,, in Computational Fluid Dynamics Review 2010 (M. Hafez et al., (2010), 51.  doi: 10.1142/9789814313377_0003.  Google Scholar [77] R. Rannacher, Adaptive Finite Element Methods for Partial Differential Equations,, in NSF/CBMS Regional Conference Series in the Mathematical Sciences, (7784), 18.   Google Scholar [78] R. Rannacher, B. Vexler and W. Wollner, A posteriori error estimation in PDE-constrained optimization with pointwise inequality constraints,, in Themenband SPP1253, (2012).   Google Scholar [79] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element,, Numer. Meth. Part. Diff. Equ., 8 (1992), 97.   Google Scholar [80] R. Rannacher and J. Vihharev, Balancing discretization and iteration error in finite element a posteriori error analysis,, in Proc., (2012).   Google Scholar [81] R. Rannacher, A. Westenberger and W. Wollner, Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error,, J. Numer. Math., 18 (2010), 303.  doi: 10.1515/jnum.2010.015.  Google Scholar [82] R. Rautmann, On optimal regularity of Navier-Stokes solutions at time $\,t=0\,$,, Math. Z., 184 (1983), 141.  doi: 10.1007/BF01252853.  Google Scholar [83] Y. Saad, "Iterative Methods for Sparse Linear Systems,", PWS Publishing Company, (1996).   Google Scholar [84] M. Schäfer and S. Turek, The benchmark problem flow around a cylinder,, in Flow Simulation with High-Performance Computers (E. H. Hirschel, (1996), 547.   Google Scholar [85] M. Schmich and B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations,, SIAM J. Sci. Comput., 30 (2008), 369.  doi: 10.1137/060670468.  Google Scholar [86] J. Shen, On error estimates of projection methods for the Navier-Stokes Equations: First order schemes,, SIAM J. Numer. Anal., 29 (1992), 57.   Google Scholar [87] J. Shen, On error estimates of the projection methods for the Navier-Stokes Equations: 2nd order schemes,, Math. Comp., 65 (1996), 1039.  doi: 10.1090/S0025-5718-96-00750-8.  Google Scholar [88] R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North Holland, (1977).   Google Scholar [89] V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer, (1997).   Google Scholar [90] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations,, SIAM J. Numer. Anal., 33 (1996), 107.  doi: 10.1137/0733007.  Google Scholar [91] L. N. Trefethen, Computation of pseudospectra,, Acta Numerica, 8 (1999), 247.  doi: 10.1017/S0962492900002932.  Google Scholar [92] L. N. Trefethen and M. Embree:, "Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators,", Princeton University Press, (2005).   Google Scholar [93] L. N. Trefethen, A. E. Trefethen, S. C. Reddy and T. A. Driscoll, A new direction in hydrodynamical stability: Beyond eigenvalues,, Tech. Report CTC92TR115 12/92, (1992).   Google Scholar [94] L. N. Trefethen, S. C. Reddy and T. A. Driscoll, Hydrodynamic Stability without eigenvalues,, Science, 261 (1993), 578.   Google Scholar [95] S. Turek, A comparative study of some time-stepping techniques for the incompressible Navier-Stokes equations,, Int. J. Numer. Meth. Fluids, 22 (1996), 987.  doi: 10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7.  Google Scholar [96] S. Turek, On discrete projection methods for the incompressible Navier-Stokes equations: An algorithmic approach,, Comput. Methods Appl. Mech. Engrg., 143 (1997), 271.  doi: 10.1016/S0045-7825(96)01155-3.  Google Scholar [97] S. Turek, "Efficient Solvers for Incompressible Flow Problems,", NNCE, (1999).   Google Scholar [98] S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables,, J. Comp. Phys., 65 (1986), 138.  doi: 10.1016/0021-9991(86)90008-2.  Google Scholar [99] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow,, J. Sci. Stat. Comp., 7 (1986), 870.  doi: 10.1137/0907059.  Google Scholar [100] R. Verfürth, "A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,", Wiley/Teubner, (1996).   Google Scholar [101] B. Vexler, "Adaptive Finite Element Methods for Parameter Identification Problems,", Dissertation, (2004).   Google Scholar [102] W. Wollner, "Adaptive Methods for PDE-based Optimal Control with Pointwise Inequality Constraints,", doctoral thesis, (2010).   Google Scholar

show all references

##### References:
 [1] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis,, Comput. Methods Appl. Mech. Eng., 142 (1997), 1.  doi: 10.1016/S0045-7825(96)01107-3.  Google Scholar [2] W. Bangerth and R. Rannacher, "Adaptive Finite Element Methods for Differential Equations,", Lectures in Mathematics, (2003).   Google Scholar [3] R. Becker, An adaptive finite element method for the Stokes equations including control of the iteration error,, in Numerical Mathematics and Advanced Applications, (1997), 609.   Google Scholar [4] R. Becker, An optimal-control approach to a posteriori error estimation for finite element discretizations of the Navier-Stokes equations,, East-West J. Numer. Math., 9 (2000), 257.   Google Scholar [5] R. Becker, Mesh adaptation for stationary flow control,, J. Math. Fluid Mech., 3 (2001), 317.  doi: 10.1007/PL00000974.  Google Scholar [6] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projection,, Calcolo, 38 (2001), 363.  doi: 10.1007/s10092-001-8180-4.  Google Scholar [7] R. Becker, M. Braack, D. Meidner, R. Rannacher and B. Vexler, Adaptive finite element methods for PDE-constrained optimal control problems,, in Reactive Flow, (2006), 177.   Google Scholar [8] R. Becker, M. Braack, R. Rannacher and Th. Richter, Mesh and model adaptivity for flow problems,, in Reactive Flows, (2006), 47.   Google Scholar [9] R. Becker, V. Heuveline and R. Rannacher, An optimal control approach to adaptivity in computational fluid mechanics,, Int. J. Numer. Meth. Fluids, 40 (2001), 105.  doi: 10.1002/fld.269.  Google Scholar [10] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concepts,, SIAM J. Optimization Control, 39 (2000), 113.  doi: 10.1137/S0363012999351097.  Google Scholar [11] R. Becker and R. Rannacher, Finite element solution of the incompressible Navier-Stokes equations on anisotropically refined meshes,, Proc. Workshop Fast Solvers for Flow Problems, (1994).   Google Scholar [12] R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods,, Lecture at ENUMATH-95, (1995), 18.   Google Scholar [13] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples,, East-West J. Numer. Math., 4 (1996), 237.   Google Scholar [14] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods,, Acta Numer., 10 (2001), 1.  doi: 10.1017/S0962492901000010.  Google Scholar [15] R. Becker and B. Vexler, A posteriori error estimation for finite element discretization of parameter identification problems,, Numer. Math., 96 (2004), 435.  doi: 10.1007/s00211-003-0482-9.  Google Scholar [16] R. Becker, C. Johnson and R. Rannacher, Adaptive error control for multigrid finite element methods,, Computing, 55 (1995), 271.  doi: 10.1007/BF02238483.  Google Scholar [17] C. Bertsch and V. Heuveline, On multigrid methods for the eigenvalue computation of non-selfadjoint elliptic operators,, East-West J. Numer. Math., 8 (2000), 275.   Google Scholar [18] M. Besier and R. Rannacher, Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow,, Int. J. Numer. Meth. Fluids, (2011).   Google Scholar [19] M. Besier and W. Wollner, On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes,, Int. J. Numer. Methods Fluids, (2011).   Google Scholar [20] S. Bönisch, Th. Dunne and R. Rannacher, Lecture on numerical simulation of liquid-structure interaction,, in Hemodynamical Flows: Aspects of Modeling, (2007).   Google Scholar [21] M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors,, Multiscale Model. Simul., 1 (2003), 221.  doi: 10.1137/S1540345902410482.  Google Scholar [22] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen equations,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 853.  doi: 10.1016/j.cma.2006.07.011.  Google Scholar [23] M. Braack and R. Rannacher, "Adaptive Finite Element Methods for Low-Mach-Number Flows with Chemical Reactions,", Lecture Series 1999-03, (1999), 1999.   Google Scholar [24] M. Braack and Th. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements,, Computers and Fluids, 35 (2006), 372.  doi: 10.1016/j.compfluid.2005.02.001.  Google Scholar [25] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations,, Math. Comp., 27 (1973), 525.  doi: 10.1090/S0025-5718-1973-0366029-9.  Google Scholar [26] S. C. Brenner and R. L. Scott, "The Mathematical Theory of Finite Element Methods,", Springer, (1994).   Google Scholar [27] F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,", Springer, (1991).   Google Scholar [28] G. F. Carey and J. T. Oden, "Finite Elements, Computational Aspects, Vol III,", Prentice-Hall, (1984).   Google Scholar [29] A. J. Chorin, Numerical solution of the Navier-Stokes equations,, Math.Comp., 22 (1968), 745.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar [30] P. G. Ciarlet, "The Finite Element Methods for Elliptic Problems,", North-holland, (1978).   Google Scholar [31] Th. Dunne and R. Rannacher, Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation,, in Fluid-Structure Interaction: Modelling, (2006), 110.   Google Scholar [32] W. E and J. G. Liu, Projection method I: convergence and numerical boundary layers,, SIAM J. Numer. Anal., 32 (1995), 1017.  doi: 10.1137/0732047.  Google Scholar [33] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations,, Acta Numerica 1995 (A. Iserles, (1995), 105.   Google Scholar [34] M. Feistauer, "Mathematical Methods in Fluid Dynamics,", Longman Scientific&Technical, (1993).   Google Scholar [35] J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics,", Springer, (1996).   Google Scholar [36] L. P. Franca and S. L. Frey, Stabilized finite element methods: II The incompressible Navier-Stokes equations,, Comput. Methods Appl. Mech. Engrg., 99 (1992), 209.  doi: 10.1016/0045-7825(92)90041-H.  Google Scholar [37] S. Friedlander and D. Serre, "Handbuch for Mathematical Fluid Dynamics, Vol. 1/2,", North-Holland, (2002).   Google Scholar [38] G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. 1: Linearized Steady Problems, Vol. 2: Nonlinear Steady Problems,", Springer: Berlin-Heidelberg-New York, (1994).   Google Scholar [39] D. Gerecht, R. Rannacher and W. Wollner, Computational aspects of pseudospectra in hydrodynamic stability analysis,, J. Math. Fluid Mech., (2011).  doi: 10.1007/s00021-011-0085-7.  Google Scholar [40] M. B. Giles and E. Süli, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality,, in Acta Numerica 2002 (A. Iserles, (2002), 145.   Google Scholar [41] V. Girault and P.-A. Raviart, "Finite Element Methods for the Navier-Stokes Equations,", Springer, (1986).   Google Scholar [42] R. Glowinski, Finite element methods for incompressible viscous flow,, in Handbook of Numerical Analysis Volume IX: Numerical Methods for Fluids (Part 3) (P. G. Ciarlet and J. L. Lions, (2003).   Google Scholar [43] R. Glowinski, J. Hron, L. Rivkind and S. Turek, Numerical study of a modified time-stepping theta-scheme for incompressible flow simulations,, J. Scientific Comput., 28 (2006), 533.   Google Scholar [44] P. M. Gresho and R. L. Sani, "Incompressible Flow and the Finite Element Method,", John Wiley & Sons, (1998).   Google Scholar [45] V. Heuveline and R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems,, Adv. Comput. Math., 15 (2001), 1.  doi: 10.1023/A:1014291224961.  Google Scholar [46] V. Heuveline and R. Rannacher, Adaptive FE eigenvalue approximation with application to hydrodynamic stability analysis,, in Advances in Numerical Mathematics (W. Fitzgibbon et al., (2006), 109.   Google Scholar [47] J. G. Heywood, The Navier-Stokes equations: On the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar [48] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part I: Regularity of solutions and second-order error estimates for spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275.  doi: 10.1137/0719018.  Google Scholar [49] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part II: Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750.  doi: 10.1137/0723049.  Google Scholar [50] J. G. Heywood and R. Rannacher, An analysis of stability concepts for the Navier-Stokes equations,, J. Reine Angew. Math., 372 (1986), 1.   Google Scholar [51] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part III: Smoothing property and higher-order error estimates for spatial discretization,, SIAM J. Numer. Anal., 25 (1988), 489.  doi: 10.1137/0725032.  Google Scholar [52] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part IV: Error analysis for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar [53] J. G Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations,, Int. J. Numer. Meth. Fluids, 22 (1996), 1.  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y.  Google Scholar [54] T. J. R. Hughes and A. N. Brooks, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation,, Comput. Meth. Appl. Mech. Engrg. 32 (1982), 32 (1982), 199.  doi: 10.1016/0045-7825(82)90071-8.  Google Scholar [55] T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation,, Comput. Meth. Appl. Mech. Engrg., 59 (1986), 85.  doi: 10.1016/0045-7825(86)90025-3.  Google Scholar [56] V. John, Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations,, Int. J. Numer. Meth. Fluids, 40 (2002), 775.  doi: 10.1002/fld.377.  Google Scholar [57] C. Johnson, S. Larsson, V. Thoméand L. B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data,, Math. Comp., 49 (1987), 331.  doi: 10.1090/S0025-5718-1987-0906175-1.  Google Scholar [58] C. Johnson, R. Rannacher and M. Boman, Numerics and hydrodynamic stability: Towards error control in CFD,, SIAM J. Numer. Anal., 32 (1995), 1058.  doi: 10.1137/0732048.  Google Scholar [59] S. Kracmar and J. Neustupa, Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities,, Z. Angew. Math. Mech., 74 (1994).   Google Scholar [60] O. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Gordon and Breach, (1969).   Google Scholar [61] M. Luskin and R. Rannacher, On the smoothing property of the Galerkin method for parabolic equations,, SIAM J. Numer. Anal., 19 (1981), 93.  doi: 10.1137/0719003.  Google Scholar [62] M. Luskin and R. Rannacher, On the smoothing property of the Crank-Nicolson scheme,, Appl. Anal., 14 (1982), 117.  doi: 10.1080/00036818208839415.  Google Scholar [63] L. Machiels, A. T. Patera and J. Peraire, Output bound approximation for partial differential equations, application to the incompressible Navier-Stokes equations,, in Industr. and Environm. Appl. of Direct and Large Eddy Numerical Simulation (S. Biringen, (1998).   Google Scholar [64] D. Meidner, "Adaptive Space-Time Finite Element Methods for Optimization Problems Governed by Nonlinear Parabolic Systems,", doctoral thesis, (2007).   Google Scholar [65] D. Meidner, R. Rannacher and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations,, J. Numer. Math., 17 (2009), 143.  doi: 10.1515/JNUM.2009.009.  Google Scholar [66] S. Müller-Urbaniak, "Eine Analyse des Zwischenschritt-$\theta$-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen,", doctoral thesis, (1993), 93.   Google Scholar [67] S. Müller, A. Prohl, R. Rannacher and S. Turek, Implicit time-discretization of the nonstationary incompressible Navier-Stokes equations,, in Proc. GAMM Seminar Fast Solvers for Flow Problems, (1994), 175.   Google Scholar [68] J. T. Oden, W. Wu and M. Ainsworth, An a posteriori error estimate for finite element approximations of the Navier-Stokes equations,, Comput. Methods Appl. Mech. Eng., 111 (1993), 185.  doi: 10.1016/0045-7825(94)90045-0.  Google Scholar [69] O. Pironneau, "Finite Element Methods for Fluids,", John Wiley, (1983).   Google Scholar [70] A. Prohl, "Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations,", Teubner, (1997).   Google Scholar [71] L. Quartapelle, "Numerical Solution of the Incompressible Navier-Stokes Equations,", Birkhäuser, (1993).   Google Scholar [72] R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations,, in Navier-Stokes Equations: Theory and Numerical Methods (J. G. Heywood et al., (1530), 167.   Google Scholar [73] R. Rannacher, Finite methods for the incompressible Navier-Stokes equations,, in Fundamental Directions in Mathematical Fluid Mechanics (G.P. Galdi et al., (2000), 191.   Google Scholar [74] R. Rannacher, Incompressible viscous flow,, in Encyclopedia of Computational Mechanics (E. Stein et al., (2004).   Google Scholar [75] R. Rannacher, Methods for numerical flow simulation,, in Hemodynamical Flows: Aspects of Modeling, (2007), 275.   Google Scholar [76] R. Rannacher, Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction,, in Computational Fluid Dynamics Review 2010 (M. Hafez et al., (2010), 51.  doi: 10.1142/9789814313377_0003.  Google Scholar [77] R. Rannacher, Adaptive Finite Element Methods for Partial Differential Equations,, in NSF/CBMS Regional Conference Series in the Mathematical Sciences, (7784), 18.   Google Scholar [78] R. Rannacher, B. Vexler and W. Wollner, A posteriori error estimation in PDE-constrained optimization with pointwise inequality constraints,, in Themenband SPP1253, (2012).   Google Scholar [79] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element,, Numer. Meth. Part. Diff. Equ., 8 (1992), 97.   Google Scholar [80] R. Rannacher and J. Vihharev, Balancing discretization and iteration error in finite element a posteriori error analysis,, in Proc., (2012).   Google Scholar [81] R. Rannacher, A. Westenberger and W. Wollner, Adaptive finite element solution of eigenvalue problems: balancing of discretization and iteration error,, J. Numer. Math., 18 (2010), 303.  doi: 10.1515/jnum.2010.015.  Google Scholar [82] R. Rautmann, On optimal regularity of Navier-Stokes solutions at time $\,t=0\,$,, Math. Z., 184 (1983), 141.  doi: 10.1007/BF01252853.  Google Scholar [83] Y. Saad, "Iterative Methods for Sparse Linear Systems,", PWS Publishing Company, (1996).   Google Scholar [84] M. Schäfer and S. Turek, The benchmark problem flow around a cylinder,, in Flow Simulation with High-Performance Computers (E. H. Hirschel, (1996), 547.   Google Scholar [85] M. Schmich and B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations,, SIAM J. Sci. Comput., 30 (2008), 369.  doi: 10.1137/060670468.  Google Scholar [86] J. Shen, On error estimates of projection methods for the Navier-Stokes Equations: First order schemes,, SIAM J. Numer. Anal., 29 (1992), 57.   Google Scholar [87] J. Shen, On error estimates of the projection methods for the Navier-Stokes Equations: 2nd order schemes,, Math. Comp., 65 (1996), 1039.  doi: 10.1090/S0025-5718-96-00750-8.  Google Scholar [88] R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North Holland, (1977).   Google Scholar [89] V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer, (1997).   Google Scholar [90] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations,, SIAM J. Numer. Anal., 33 (1996), 107.  doi: 10.1137/0733007.  Google Scholar [91] L. N. Trefethen, Computation of pseudospectra,, Acta Numerica, 8 (1999), 247.  doi: 10.1017/S0962492900002932.  Google Scholar [92] L. N. Trefethen and M. Embree:, "Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators,", Princeton University Press, (2005).   Google Scholar [93] L. N. Trefethen, A. E. Trefethen, S. C. Reddy and T. A. Driscoll, A new direction in hydrodynamical stability: Beyond eigenvalues,, Tech. Report CTC92TR115 12/92, (1992).   Google Scholar [94] L. N. Trefethen, S. C. Reddy and T. A. Driscoll, Hydrodynamic Stability without eigenvalues,, Science, 261 (1993), 578.   Google Scholar [95] S. Turek, A comparative study of some time-stepping techniques for the incompressible Navier-Stokes equations,, Int. J. Numer. Meth. Fluids, 22 (1996), 987.  doi: 10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7.  Google Scholar [96] S. Turek, On discrete projection methods for the incompressible Navier-Stokes equations: An algorithmic approach,, Comput. Methods Appl. Mech. Engrg., 143 (1997), 271.  doi: 10.1016/S0045-7825(96)01155-3.  Google Scholar [97] S. Turek, "Efficient Solvers for Incompressible Flow Problems,", NNCE, (1999).   Google Scholar [98] S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables,, J. Comp. Phys., 65 (1986), 138.  doi: 10.1016/0021-9991(86)90008-2.  Google Scholar [99] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow,, J. Sci. Stat. Comp., 7 (1986), 870.  doi: 10.1137/0907059.  Google Scholar [100] R. Verfürth, "A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,", Wiley/Teubner, (1996).   Google Scholar [101] B. Vexler, "Adaptive Finite Element Methods for Parameter Identification Problems,", Dissertation, (2004).   Google Scholar [102] W. Wollner, "Adaptive Methods for PDE-based Optimal Control with Pointwise Inequality Constraints,", doctoral thesis, (2010).   Google Scholar
 [1] Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110 [2] Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 [3] Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 [4] Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 [5] Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 [6] Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 [7] Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 [8] Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348 [9] Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408 [10] Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 [11] P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 [12] Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 [13] Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 [14] Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 [15] Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352 [16] Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 [17] Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002 [18] Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 [19] Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 [20] Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

2019 Impact Factor: 1.233

## Metrics

• PDF downloads (77)
• HTML views (0)
• Cited by (3)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]