February  2012, 5(1): 127-146. doi: 10.3934/dcdss.2012.5.127

Global solvability of a model for grain boundary motion with constraint

1. 

Department of Electronic Engineering and Computer, Science School of Engineering, Kinki University, Takayaumenobe, Higashihiroshimashi, Hiroshima, 739-2116

2. 

Department of Education, School of Education, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto, 603-8301, Japan

3. 

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686, Japan

Received  June 2009 Revised  December 2009 Published  February 2011

We consider a model for grain boundary motion with constraint. In composite material science it is very important to investigate the grain boundary formation and its dynamics. In this paper we study a phase-filed model of grain boundaries, which is a modified version of the one proposed by R. Kobayashi, J.A. Warren and W.C. Carter [18]. The model is described as a system of a nonlinear parabolic partial differential equation and a nonlinear parabolic variational inequality. The main objective of this paper is to show the global existence of a solution for our model, employing some subdifferential techniques in the convex analysis.
Citation: Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki. Global solvability of a model for grain boundary motion with constraint. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 127-146. doi: 10.3934/dcdss.2012.5.127
References:
[1]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow,, J. Funct. Anal., 180 (2001), 347. doi: 10.1006/jfan.2000.3698.

[2]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equation: The parabolic case,, Arch. Ration. Mech. Anal., 176 (2005), 415. doi: 10.1007/s00205-005-0358-5.

[3]

H. Attouch, "Variational Convergence for Functions and Operators,", Pitman Advanced Publishing Program, (1984).

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Editura Academiei Republicii Socialiste Romania, (1976).

[5]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN, J. Differential Equations, 184 (2002), 475. doi: 10.1006/jdeq.2001.4150.

[6]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973).

[7]

J. W. Cahn, P. Fife and O. Penrose, A phase-field model for diffusion-induced grain-boundary motion,, Acta Mater., 45 (1997), 4397. doi: 10.1016/S1359-6454(97)00074-8.

[8]

L. Q. Chen, Phase-field models for microstructure evolution,, Annu. Rev. Mater Res., 32 (2002), 113. doi: 10.1146/annurev.matsci.32.112001.132041.

[9]

K. Deckelnick and C. M. Elliott, An existence and uniqueness result for a phase-field model of diffusion-induced grain-boundary motion,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1323. doi: 10.1017/S0308210500001414.

[10]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations,, Proc. Taniguchi Conf. on Math., 31 (2001), 93.

[11]

M. E. Gurtin and M. T. Lusk, Sharp interface and phase-field theories of recrystallization in the plane,, Phys. D, 130 (1999), 133. doi: 10.1016/S0167-2789(98)00323-6.

[12]

A. Ito, M. Gokieli, M. Niezgódka and M. Szpindler, Mathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type,, submitted., ().

[13]

A. Ito, N. Kenmochi and N. Yamazaki, A phase-field model of grain boundary motion,, Appl. Math., 53 (2008), 433. doi: 10.1007/s10492-008-0035-8.

[14]

A. Ito, N. Kenmochi and N. Yamazaki, Weak solutions of grain boundary motion model with singularity,, Rend. Mat. Appl. (7), 29 (2009), 51.

[15]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Education, 30 (1981), 1.

[16]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, in, 4 (2007), 203.

[17]

R. Kobayashi and Y. Giga, Equations with singular diffusivity,, J. Statist. Phys., 95 (1999), 1187. doi: 10.1023/A:1004570921372.

[18]

R. Kobayashi, J. A. Warren and W. C. Carter, A continuum model of grain boundaries,, Phys. D, 140 (2000), 141. doi: 10.1016/S0167-2789(00)00023-3.

[19]

R. Kobayashi, J. A. Warren and W. C. Carter, Grain boundary model and singular diffusivity,, in, 14 (1999), 283.

[20]

A. E. Lobkovsky and J. A. Warren, Phase field model of premelting of grain boundaries,, Phys. D, 164 (2002), 202.

[21]

M. T. Lusk, A phase field paradigm for grain growth and recrystallization,, Proc. R. Soc. London A, 455 (1999), 677.

[22]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems,, J. Differential Equations, 46 (1982), 268.

[23]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications, 28 (1996).

show all references

References:
[1]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow,, J. Funct. Anal., 180 (2001), 347. doi: 10.1006/jfan.2000.3698.

[2]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equation: The parabolic case,, Arch. Ration. Mech. Anal., 176 (2005), 415. doi: 10.1007/s00205-005-0358-5.

[3]

H. Attouch, "Variational Convergence for Functions and Operators,", Pitman Advanced Publishing Program, (1984).

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Editura Academiei Republicii Socialiste Romania, (1976).

[5]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN, J. Differential Equations, 184 (2002), 475. doi: 10.1006/jdeq.2001.4150.

[6]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973).

[7]

J. W. Cahn, P. Fife and O. Penrose, A phase-field model for diffusion-induced grain-boundary motion,, Acta Mater., 45 (1997), 4397. doi: 10.1016/S1359-6454(97)00074-8.

[8]

L. Q. Chen, Phase-field models for microstructure evolution,, Annu. Rev. Mater Res., 32 (2002), 113. doi: 10.1146/annurev.matsci.32.112001.132041.

[9]

K. Deckelnick and C. M. Elliott, An existence and uniqueness result for a phase-field model of diffusion-induced grain-boundary motion,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1323. doi: 10.1017/S0308210500001414.

[10]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations,, Proc. Taniguchi Conf. on Math., 31 (2001), 93.

[11]

M. E. Gurtin and M. T. Lusk, Sharp interface and phase-field theories of recrystallization in the plane,, Phys. D, 130 (1999), 133. doi: 10.1016/S0167-2789(98)00323-6.

[12]

A. Ito, M. Gokieli, M. Niezgódka and M. Szpindler, Mathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type,, submitted., ().

[13]

A. Ito, N. Kenmochi and N. Yamazaki, A phase-field model of grain boundary motion,, Appl. Math., 53 (2008), 433. doi: 10.1007/s10492-008-0035-8.

[14]

A. Ito, N. Kenmochi and N. Yamazaki, Weak solutions of grain boundary motion model with singularity,, Rend. Mat. Appl. (7), 29 (2009), 51.

[15]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Education, 30 (1981), 1.

[16]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, in, 4 (2007), 203.

[17]

R. Kobayashi and Y. Giga, Equations with singular diffusivity,, J. Statist. Phys., 95 (1999), 1187. doi: 10.1023/A:1004570921372.

[18]

R. Kobayashi, J. A. Warren and W. C. Carter, A continuum model of grain boundaries,, Phys. D, 140 (2000), 141. doi: 10.1016/S0167-2789(00)00023-3.

[19]

R. Kobayashi, J. A. Warren and W. C. Carter, Grain boundary model and singular diffusivity,, in, 14 (1999), 283.

[20]

A. E. Lobkovsky and J. A. Warren, Phase field model of premelting of grain boundaries,, Phys. D, 164 (2002), 202.

[21]

M. T. Lusk, A phase field paradigm for grain growth and recrystallization,, Proc. R. Soc. London A, 455 (1999), 677.

[22]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems,, J. Differential Equations, 46 (1982), 268.

[23]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications, 28 (1996).

[1]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[2]

Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139

[3]

Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009

[4]

Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276

[5]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[6]

Mahdi Boukrouche, Grzegorz Łukaszewicz. On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3969-3983. doi: 10.3934/dcds.2014.34.3969

[7]

Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165

[8]

Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems & Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157

[9]

Shin-Ichiro Ei, Hiroshi Matsuzawa. The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 901-921. doi: 10.3934/dcds.2010.26.901

[10]

Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591

[11]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[12]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[13]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[14]

L. Ke. Boundary behaviors for solutions of singular elliptic equations. Conference Publications, 1998, 1998 (Special) : 388-396. doi: 10.3934/proc.1998.1998.388

[15]

Elie Bretin, Imen Mekkaoui, Jérôme Pousin. Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula. Inverse Problems & Imaging, 2018, 12 (1) : 125-152. doi: 10.3934/ipi.2018005

[16]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Boundary feedback as a singular limit of damped hyperbolic problems with terms concentrating at the boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5125-5147. doi: 10.3934/dcds.2019208

[17]

Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda. Reduced model from a reaction-diffusion system of collective motion of camphor boats. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 847-856. doi: 10.3934/dcdss.2015.8.847

[18]

María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

C. García Vázquez, Francisco Ortegón Gallego. On certain nonlinear parabolic equations with singular diffusion and data in $L^1$. Communications on Pure & Applied Analysis, 2005, 4 (3) : 589-612. doi: 10.3934/cpaa.2005.4.589

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]