February  2012, 5(1): 147-158. doi: 10.3934/dcdss.2012.5.147

A relation between cross-diffusion and reaction-diffusion

1. 

Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan

Received  March 2009 Revised  January 2010 Published  February 2011

Reaction-diffusion system approximations to a cross-diffusion system are investigated. Iida and Ninomiya~[Recent Advances on Elliptic and Parabolic Issues, 145--164 (2006)] proposed a semilinear reaction-diffusion system with a small parameter and showed that the limit equation takes the form of a weakly coupled cross-diffusion system provided that solutions of both the reaction-diffusion and the cross-diffusion systems are sufficiently smooth. In this paper, the results are extended to a more general cross-diffusion problem involving strongly coupled systems. It is shown that a solution of the problem can be approximated by that of a semilinear reaction-diffusion system without any assumptions on the solutions. This indicates that the mechanism of cross-diffusion might be captured by reaction-diffusion interaction.
Citation: Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147
References:
[1]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2006), 301. doi: 10.1137/S0036141003427798.

[2]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39. doi: 10.1016/j.jde.2005.08.002.

[3]

M. E. Gurtin, Some mathematical models for population dynamics that lead to segregation,, Quart. Appl. Math, 32 (1974), 1.

[4]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2.

[5]

M. Iida and H. Ninomiya, A reaction-diffusion approximation to a cross-diffusion system,, in, (2006), 145. doi: 10.1142/9789812774170_0007.

[6]

T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms,, J. Math. Anal. Appl., 323 (2006), 1387. doi: 10.1016/j.jmaa.2005.11.065.

[7]

E. H. Kerner, Further considerations on the statistical mechanics of biological associations,, Bull. Math. Biophys., 21 (1959), 217. doi: 10.1007/BF02476361.

[8]

H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems,, Nonlinearity, 20 (2007), 2319. doi: 10.1088/0951-7715/20/10/003.

[9]

H. Murakawa, A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems,, Kybernetika, 45 (2009), 580.

[10]

H. Murakawa, Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system,, preprint., ().

[11]

A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives. Second Edition,", Interdisciplinary Applied Mathematics, 14 (2001).

[12]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model,, J. Differential Equations, 200 (2004), 245. doi: 10.1016/j.jde.2004.01.004.

[13]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[14]

R. Temam, "Navier-Stokes Equation Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).

show all references

References:
[1]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2006), 301. doi: 10.1137/S0036141003427798.

[2]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39. doi: 10.1016/j.jde.2005.08.002.

[3]

M. E. Gurtin, Some mathematical models for population dynamics that lead to segregation,, Quart. Appl. Math, 32 (1974), 1.

[4]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2.

[5]

M. Iida and H. Ninomiya, A reaction-diffusion approximation to a cross-diffusion system,, in, (2006), 145. doi: 10.1142/9789812774170_0007.

[6]

T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms,, J. Math. Anal. Appl., 323 (2006), 1387. doi: 10.1016/j.jmaa.2005.11.065.

[7]

E. H. Kerner, Further considerations on the statistical mechanics of biological associations,, Bull. Math. Biophys., 21 (1959), 217. doi: 10.1007/BF02476361.

[8]

H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems,, Nonlinearity, 20 (2007), 2319. doi: 10.1088/0951-7715/20/10/003.

[9]

H. Murakawa, A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems,, Kybernetika, 45 (2009), 580.

[10]

H. Murakawa, Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system,, preprint., ().

[11]

A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives. Second Edition,", Interdisciplinary Applied Mathematics, 14 (2001).

[12]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model,, J. Differential Equations, 200 (2004), 245. doi: 10.1016/j.jde.2004.01.004.

[13]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3.

[14]

R. Temam, "Navier-Stokes Equation Theory and Numerical Analysis,", AMS Chelsea Publishing, (2001).

[1]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[2]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[3]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[4]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[5]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[6]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[7]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[8]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[9]

Salomé Martínez, Wei-Ming Ni. Periodic solutions for a 3x 3 competitive system with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 725-746. doi: 10.3934/dcds.2006.15.725

[10]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[11]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[12]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[13]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[14]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[15]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[16]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[17]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[18]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[19]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[20]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]