February  2012, 5(1): 183-189. doi: 10.3934/dcdss.2012.5.183

Stripe patterns and the Eikonal equation

1. 

Dept. of Mathematics and Computer Science and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, Netherlands

2. 

Technische Universität Dortmund, Fakultät für Mathematik, Lehrstuhl I, Vogelpothsweg 87, 44227 Dortmund, Germany

Received  April 2009 Revised  December 2009 Published  February 2011

We study a new formulation for the Eikonal equation $|\nabla u| =1$ on a bounded subset of $\R^2$. Considering a field $P$ of orthogonal projections onto $1$-dimensional subspaces, with div$ P \in L^2$, we prove existence and uniqueness for solutions of the equation $P$ div $P$=0. We give a geometric description, comparable with the classical case, and we prove that such solutions exist only if the domain is a tubular neighbourhood of a regular closed curve.
   This formulation provides a useful approach to the analysis of stripe patterns. It is specifically suited to systems where the physical properties of the pattern are invariant under rotation over 180 degrees, such as systems of block copolymers or liquid crystals.
Citation: Mark A. Peletier, Marco Veneroni. Stripe patterns and the Eikonal equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 183-189. doi: 10.3934/dcdss.2012.5.183
References:
[1]

J. M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models,, preprint, ().

[2]

E. Bodenschatz, W. Pesch and G. Ahlers, Recent developments in Rayleigh-Bénard convection,, in, 32 (2000), 709.

[3]

J. A. Boon, C. J. Budd and G. W. Hunt, Level set methods for the displacement of layered materials,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 1447.

[4]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487. doi: 10.1090/S0002-9947-1984-0732102-X.

[5]

N. Ercolani, R. Indik, A. C. Newell and T. Passot, Global description of patterns far from onset: A case study,, in, 1 (2003), 411.

[6]

J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature,, Indiana Univ. Math. J., 35 (1986), 45. doi: 10.1512/iumj.1986.35.35003.

[7]

P.-E. Jabin, F. Otto and B. Perthame, Line-energy Ginzburg-Landau models: Zero-energy states,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), 187.

[8]

M. Peletier and M. Röger, Partial localization, lipid bilayers, and the elastica functional,, Arch. Ration. Mech. Anal., 193 (2009), 475. doi: 10.1007/s00205-008-0150-4.

[9]

M. A. Peletier and M. Veneroni, Non-oriented solutions of the eikonal equation,, C. R. Math. Acad. Sci. Paris., 348 (2010), 1099. doi: 10.1016/j.crma.2010.09.011.

[10]

M. A. Peletier and M. Veneroni, Stripe patterns in a model for block copolymers,, Math. Models Methods Appl. Sci., 20 (2010), 843. doi: 10.1142/S0218202510004465.

[11]

A. Ruzette and L. Leibler, Block copolymers in tomorrow's plastics,, Nature Materials, 4 (2005), 19. doi: 10.1038/nmat1295.

show all references

References:
[1]

J. M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models,, preprint, ().

[2]

E. Bodenschatz, W. Pesch and G. Ahlers, Recent developments in Rayleigh-Bénard convection,, in, 32 (2000), 709.

[3]

J. A. Boon, C. J. Budd and G. W. Hunt, Level set methods for the displacement of layered materials,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 1447.

[4]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487. doi: 10.1090/S0002-9947-1984-0732102-X.

[5]

N. Ercolani, R. Indik, A. C. Newell and T. Passot, Global description of patterns far from onset: A case study,, in, 1 (2003), 411.

[6]

J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature,, Indiana Univ. Math. J., 35 (1986), 45. doi: 10.1512/iumj.1986.35.35003.

[7]

P.-E. Jabin, F. Otto and B. Perthame, Line-energy Ginzburg-Landau models: Zero-energy states,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), 187.

[8]

M. Peletier and M. Röger, Partial localization, lipid bilayers, and the elastica functional,, Arch. Ration. Mech. Anal., 193 (2009), 475. doi: 10.1007/s00205-008-0150-4.

[9]

M. A. Peletier and M. Veneroni, Non-oriented solutions of the eikonal equation,, C. R. Math. Acad. Sci. Paris., 348 (2010), 1099. doi: 10.1016/j.crma.2010.09.011.

[10]

M. A. Peletier and M. Veneroni, Stripe patterns in a model for block copolymers,, Math. Models Methods Appl. Sci., 20 (2010), 843. doi: 10.1142/S0218202510004465.

[11]

A. Ruzette and L. Leibler, Block copolymers in tomorrow's plastics,, Nature Materials, 4 (2005), 19. doi: 10.1038/nmat1295.

[1]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[2]

Christian Kuehn, Pasha Tkachov. Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2077-2100. doi: 10.3934/dcds.2019087

[3]

Chadi Nour. Construction of solutions to a global Eikonal equation. Conference Publications, 2007, 2007 (Special) : 779-783. doi: 10.3934/proc.2007.2007.779

[4]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[5]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[6]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[7]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[8]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[9]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[10]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[11]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[12]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[13]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[14]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[15]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

[16]

Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111

[17]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[18]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[19]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[20]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]