February  2012, 5(1): 191-207. doi: 10.3934/dcdss.2012.5.191

Modeling drug-protein dynamics

1. 

Mathematical Institute, Leiden University, PB 9512, 2300 RA Leiden, Netherlands

Received  March 2009 Revised  January 2010 Published  February 2011

In this paper we discuss two models involving protein binding. The first model describes a system involving a drug, a receptor and a protein, and the question is to what extent the affinity of the drug to the protein affects the drug-receptor binding and thereby the efficiency of the drug. The second model is the basic model underlying Target-Mediated Drug Disposition, which describes the pharmacokinetics of a drug in the presence of a target, often a receptor.
Citation: Lambertus A. Peletier. Modeling drug-protein dynamics. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 191-207. doi: 10.3934/dcdss.2012.5.191
References:
[1]

D. J. A. Crommelin (ed), Robert D. Sindelar (ed) and Bernd Meibohm (ed), "Pharmaceutical Biotechnology: Fundamentals and Applications,", Informa Healthcare, (2008).

[2]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifiability of model parameters,, J. Pharmacokinet. Phamacodyn., 35 (2008), 573. doi: 10.1007/s10928-008-9102-8.

[3]

T. Kenakin, "A Pharmacology Primer: Theory, Application and Methods,", Elsevier Academic Press, (2004).

[4]

B.-F. Krippendorff, K. Kuester, C. Kloft and W. Huisinga, Nonlinear pharmacokinetics and therapeutic proteins resulting from receptor-mediated endocytosis,, J. Pharmacokinet. Phamacodyn., 36 (): 239.

[5]

G. Levy, Pharmacologic target mediated drug disposition,, Clin. Pharmacol. Ther., 56 (1994), 248. doi: 10.1038/clpt.1994.134.

[6]

D. E. Mager, Target-mediated drug disposition and dynamics,, Biochem. Pharmacology, 72 (2006), 1. doi: 10.1016/j.bcp.2005.12.041.

[7]

D. E. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, J. Pharmacokinet. Phamacodyn., 28 (2001), 507. doi: 10.1023/A:1014414520282.

[8]

D. E. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, Pharm. Research, 22 (2005), 1589. doi: 10.1007/s11095-005-6650-0.

[9]

B. K. Martin, Kinetics of elimination of drugs possessing high affinity for the plasma proteins,, Nature, 207 (1965), 959. doi: 10.1038/207959a0.

[10]

B. Meibohm (ed), "Pharmacokinetics and Pharmacodynamics of Biotech Drugs: Principles and Case Studies in Drug Development,", Wiley-VCH Verlag GmbH & Co KGaA, (2006).

[11]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description,, J. Theor. Biology, 256 (2009), 253. doi: 10.1016/j.jtbi.2008.09.014.

[12]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition,, Eur. J. of Pharm. Sci., 38 (2009), 445. doi: 10.1016/j.ejps.2009.09.007.

[13]

R. L. Rich, Y. S. Day, T. A. Morton, D. G. Myszka, High-resolution and high-throughput protocols for measuring drug/Human Serum Albumin interactions using BIACORE,, Anal. Biochem., 296 (2001), 197. doi: 10.1006/abio.2001.5314.

[14]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body,, Pharm. Research, 6 (1989), 192. doi: 10.1023/A:1015905331391.

[15]

G. L. Trainor, The importance of plasma protein binding in drug discovery,, Expert Opin. Drug. Discov., 2 (2007), 51. doi: 10.1517/17460441.2.1.51.

[16]

J. G. Wagner, A new generalised nonlinear pharmacokinetic model and its implications,, in J. G. Wagner (ed), (1971), 302.

show all references

References:
[1]

D. J. A. Crommelin (ed), Robert D. Sindelar (ed) and Bernd Meibohm (ed), "Pharmaceutical Biotechnology: Fundamentals and Applications,", Informa Healthcare, (2008).

[2]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifiability of model parameters,, J. Pharmacokinet. Phamacodyn., 35 (2008), 573. doi: 10.1007/s10928-008-9102-8.

[3]

T. Kenakin, "A Pharmacology Primer: Theory, Application and Methods,", Elsevier Academic Press, (2004).

[4]

B.-F. Krippendorff, K. Kuester, C. Kloft and W. Huisinga, Nonlinear pharmacokinetics and therapeutic proteins resulting from receptor-mediated endocytosis,, J. Pharmacokinet. Phamacodyn., 36 (): 239.

[5]

G. Levy, Pharmacologic target mediated drug disposition,, Clin. Pharmacol. Ther., 56 (1994), 248. doi: 10.1038/clpt.1994.134.

[6]

D. E. Mager, Target-mediated drug disposition and dynamics,, Biochem. Pharmacology, 72 (2006), 1. doi: 10.1016/j.bcp.2005.12.041.

[7]

D. E. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, J. Pharmacokinet. Phamacodyn., 28 (2001), 507. doi: 10.1023/A:1014414520282.

[8]

D. E. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition,, Pharm. Research, 22 (2005), 1589. doi: 10.1007/s11095-005-6650-0.

[9]

B. K. Martin, Kinetics of elimination of drugs possessing high affinity for the plasma proteins,, Nature, 207 (1965), 959. doi: 10.1038/207959a0.

[10]

B. Meibohm (ed), "Pharmacokinetics and Pharmacodynamics of Biotech Drugs: Principles and Case Studies in Drug Development,", Wiley-VCH Verlag GmbH & Co KGaA, (2006).

[11]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description,, J. Theor. Biology, 256 (2009), 253. doi: 10.1016/j.jtbi.2008.09.014.

[12]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition,, Eur. J. of Pharm. Sci., 38 (2009), 445. doi: 10.1016/j.ejps.2009.09.007.

[13]

R. L. Rich, Y. S. Day, T. A. Morton, D. G. Myszka, High-resolution and high-throughput protocols for measuring drug/Human Serum Albumin interactions using BIACORE,, Anal. Biochem., 296 (2001), 197. doi: 10.1006/abio.2001.5314.

[14]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body,, Pharm. Research, 6 (1989), 192. doi: 10.1023/A:1015905331391.

[15]

G. L. Trainor, The importance of plasma protein binding in drug discovery,, Expert Opin. Drug. Discov., 2 (2007), 51. doi: 10.1517/17460441.2.1.51.

[16]

J. G. Wagner, A new generalised nonlinear pharmacokinetic model and its implications,, in J. G. Wagner (ed), (1971), 302.

[1]

Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022

[2]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[3]

Karl Peter Hadeler. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1541-1560. doi: 10.3934/mbe.2013.10.1541

[4]

Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097

[5]

Rebeccah E. Marsh, Jack A. Tuszyński, Michael Sawyer, Kenneth J. E. Vos. A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 325-354. doi: 10.3934/mbe.2011.8.325

[6]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[7]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[8]

Jeng-Huei Chen. An analysis of functional curability on HIV infection models with Michaelis-Menten-type immune response and its generalization. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2089-2120. doi: 10.3934/dcdsb.2017086

[9]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[10]

Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016

[11]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

[12]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[13]

Tuoi Vo, William Lee, Adam Peddle, Martin Meere. Modelling chemistry and biology after implantation of a drug-eluting stent. Part Ⅰ: Drug transport. Mathematical Biosciences & Engineering, 2017, 14 (2) : 491-509. doi: 10.3934/mbe.2017030

[14]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[15]

Adam Peddle, William Lee, Tuoi Vo. Modelling chemistry and biology after implantation of a drug-eluting stent. Part Ⅱ: Cell proliferation. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1117-1135. doi: 10.3934/mbe.2018050

[16]

Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks & Heterogeneous Media, 2019, 14 (1) : ⅰ-ⅱ. doi: 10.3934/nhm.20191i

[17]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[18]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[19]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[20]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]