June  2012, 5(3): 419-426. doi: 10.3934/dcdss.2012.5.419

On the instability of a nonlocal conservation law

1. 

Institut de Mathématiques et de Modélisation de Monptellier, Université Montpellier II, 34 095 Montpellier

Received  August 2010 Revised  January 2011 Published  October 2011

We are interested in a nonlocal conservation law which describes the morphodynamics of sand dunes sheared by a fluid flow, recently proposed by Andrew C. Fowler and studied by [1,2]. We prove that constant solutions of Fowler's equation are non-linearly unstable. We also illustrate this fact using a finite difference scheme.
Citation: Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419
References:
[1]

N. Alibaud, P. Azerad and D. Isèbe, A non-monotone nonlocal conservation law for dune morphodynamics,, Differential and Integral Equations, 23 (2010), 155.

[2]

B. Alvarez-Samaniego and P. Azerad, Existence of travelling-wave and local well-posedness of the Fowler equation,, Disc. Cont. Dyn. Syst. Ser. B, 12 (2009), 671. doi: 10.3934/dcdsb.2009.12.671.

[3]

P. Azerad, A. Bouharguane and J.-F. Crouzet, Simultaneous denoising and enhancement of signals by a fractal conservation law,, Communications in Nonlinear Science and Numerical Simulation, 17(2) (2012), 867. doi: 10.1016/j.cnsns.2011.07.001.

[4]

A. Bouharguane, Global existence of solutions to the Fowler equation in a neighbourhood of travelling-waves,, to appear in International Journal of Differential Equations. Archived at \url{http://arxiv.org/abs/1107.0152}., ().

[5]

P. Azerad and A. Bouharguane, Finite difference approximations for a fractional diffusion/anti-diffusion equation,, preprint: \url{http://arxiv.org/abs/1104.4861}., ().

[6]

A. De Bouard, Instability of stationary bubbles,, SIAM J .Math. Anal., 26 (1995), 566. doi: 10.1137/S0036141092237029.

[7]

A. C. Fowler, Dunes and drumlins,, in, 211 (2001), 430.

[8]

A. C. Fowler, Evolution equations for dunes and drumlins,, Mathematics and Environment (Paris, 96 (2002), 377.

[9]

A. C. Fowler, "Mathematics and the Environment," lecture notes., Available from: \url{http://www2.maths.ox.ac.uk/~fowler/courses/mathenvo.html}., ().

[10]

K. K. J. Kouakou and P.-Y. Lagrée, Evolution of a model dune in a shear flow,, Eur. J. Mech. B Fluids, 25 (2006), 348. doi: 10.1016/j.euromechflu.2005.09.002.

[11]

P.-Y. Lagrée and K. Kouakou, Stability of an erodible bed in various shear flows,, European Physical Journal B - Condensed Matter, 47 (2005), 115.

[12]

I. Podlubny, "An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications,", Mathematics in Science and Engineering, 198 (1999).

show all references

References:
[1]

N. Alibaud, P. Azerad and D. Isèbe, A non-monotone nonlocal conservation law for dune morphodynamics,, Differential and Integral Equations, 23 (2010), 155.

[2]

B. Alvarez-Samaniego and P. Azerad, Existence of travelling-wave and local well-posedness of the Fowler equation,, Disc. Cont. Dyn. Syst. Ser. B, 12 (2009), 671. doi: 10.3934/dcdsb.2009.12.671.

[3]

P. Azerad, A. Bouharguane and J.-F. Crouzet, Simultaneous denoising and enhancement of signals by a fractal conservation law,, Communications in Nonlinear Science and Numerical Simulation, 17(2) (2012), 867. doi: 10.1016/j.cnsns.2011.07.001.

[4]

A. Bouharguane, Global existence of solutions to the Fowler equation in a neighbourhood of travelling-waves,, to appear in International Journal of Differential Equations. Archived at \url{http://arxiv.org/abs/1107.0152}., ().

[5]

P. Azerad and A. Bouharguane, Finite difference approximations for a fractional diffusion/anti-diffusion equation,, preprint: \url{http://arxiv.org/abs/1104.4861}., ().

[6]

A. De Bouard, Instability of stationary bubbles,, SIAM J .Math. Anal., 26 (1995), 566. doi: 10.1137/S0036141092237029.

[7]

A. C. Fowler, Dunes and drumlins,, in, 211 (2001), 430.

[8]

A. C. Fowler, Evolution equations for dunes and drumlins,, Mathematics and Environment (Paris, 96 (2002), 377.

[9]

A. C. Fowler, "Mathematics and the Environment," lecture notes., Available from: \url{http://www2.maths.ox.ac.uk/~fowler/courses/mathenvo.html}., ().

[10]

K. K. J. Kouakou and P.-Y. Lagrée, Evolution of a model dune in a shear flow,, Eur. J. Mech. B Fluids, 25 (2006), 348. doi: 10.1016/j.euromechflu.2005.09.002.

[11]

P.-Y. Lagrée and K. Kouakou, Stability of an erodible bed in various shear flows,, European Physical Journal B - Condensed Matter, 47 (2005), 115.

[12]

I. Podlubny, "An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications,", Mathematics in Science and Engineering, 198 (1999).

[1]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[2]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[3]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[4]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[5]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[6]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[7]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[8]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[9]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[10]

Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057

[11]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[12]

Amy Allwright, Abdon Atangana. Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 443-466. doi: 10.3934/dcdss.2020025

[13]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020089

[14]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[15]

Cónall Kelly, Alexandra Rodkina. Constrained stability and instability of polynomial difference equations with state-dependent noise. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 913-933. doi: 10.3934/dcdsb.2009.11.913

[16]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

[17]

Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090

[18]

Chunpeng Wang, Jingxue Yin, Bibo Lu. Anti-shifting phenomenon of a convective nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1211-1236. doi: 10.3934/dcdsb.2010.14.1211

[19]

Jesenko Vukadinovic. Global dissipativity and inertial manifolds for diffusive burgers equations with low-wavenumber instability. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 327-341. doi: 10.3934/dcds.2011.29.327

[20]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]