June  2012, 5(3): 545-557. doi: 10.3934/dcdss.2012.5.545

Alternating proximal algorithm with costs-to-move, dual description and application to PDE's

1. 

Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène, Bataillon, 34095 Montpellier Cedex 5, France

Received  April 2010 Revised  May 2010 Published  October 2011

Given real Hilbert spaces $\mathcal{X},\mathcal{Y},\mathcal{Z}$, closed convex functions $f : \mathcal{X} \longrightarrow \mathbb{R}\cup\{+\infty\}$, $g : \mathcal{Y} \longrightarrow \mathbb{R}\cup\{+\infty\}$ and linear continuous operators $A : \mathcal{X} \longrightarrow \mathcal{Z}$, $B : \mathcal{Y} \longrightarrow \mathcal{Z}$, we study the following alternating proximal algorithm $$ \begin{equation} \left\{ \begin{array}{ll} x_{n+1}&=argmin\{f(\zeta) + \frac{1}{2\gamma}\|A\zeta - By_n\|^2_z +\frac{\alpha}{2}\|\zeta - x_n\|^2_x; \quad \zeta\in\mathcal{X}\}\\ y_{n+1}&=argmin\{g(\eta) + \frac{1}{2\gamma}\|Ax_{n+1} - B\eta\|^2_z +\frac{\nu}{2}\|\eta - y_n\|^2_y; \quad \eta\in\mathcal{Y}\}, \end{array} \right. \end{equation} $$ where $\gamma$, $\alpha$ and $\nu$ are positive parameters. Under suitable conditions, we prove that any sequence $(x_n,y_n)$ generated by $(\mathcal{A})$ weakly converges toward a minimum point of the function $(x,y)\mapsto f(x) + g(y) + \frac{1}{2\gamma}\|Ax - By\|^2_z$ and that the sequence of dual variables $\left(-\frac{1}{\gamma}(Ax_n-By_n)\right)$ strongly converges in $\mathcal{Z}$ toward the unique minimizer of the function $z\mapsto f^*(A^*z)+g^*(-B^*z)+\frac{\gamma}{2}\|z\|^2_z$. An application is given in variational problems and PDE's.
Citation: Pierre Frankel. Alternating proximal algorithm with costs-to-move, dual description and application to PDE's. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 545-557. doi: 10.3934/dcdss.2012.5.545
References:
[1]

F. Acker and M.-A. Prestel, Convergence d'un schéma de minimisation alternée,, Annales de la Faculté des Sciences de Toulouse V, 2 (1980), 1. Google Scholar

[2]

H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's,, Journal of Convex Analysis, 15 (2008), 485. Google Scholar

[3]

H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Applications to PDE's and Optimization,", MPS/SIAM Series on Optimization, 6 (2006). Google Scholar

[4]

H. Attouch, A. Cabot, P. Frankel and J. Peypouquet, Alternating proximal algorithms for constrained variational inequalities. Applications to domain decomposition for PDE's,, accepted in Nonlinear Analysis., (). Google Scholar

[5]

H. Attouch, P. Redont and A. Soubeyran, A new class of alternating proximal minimization algorithms with costs-to-move,, SIAM Journal on Optimization, 18 (2007), 1061. doi: 10.1137/060657248. Google Scholar

[6]

H. H. Bauschke, P. L. Combettes and S. Reich, The asymptotic behavior of the composition of two resolvents,, Nonlinear Analysis, 60 (2005), 283. Google Scholar

[7]

A. Cabot and P. Frankel, Alternating proximal algorithms with costs-to-move and asymptotically vanishing coupling,, accepted in Optimization., (). Google Scholar

[8]

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings,, Bull. Amer. Math. Soc., 73 (1967), 591. doi: 10.1090/S0002-9904-1967-11761-0. Google Scholar

show all references

References:
[1]

F. Acker and M.-A. Prestel, Convergence d'un schéma de minimisation alternée,, Annales de la Faculté des Sciences de Toulouse V, 2 (1980), 1. Google Scholar

[2]

H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's,, Journal of Convex Analysis, 15 (2008), 485. Google Scholar

[3]

H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Applications to PDE's and Optimization,", MPS/SIAM Series on Optimization, 6 (2006). Google Scholar

[4]

H. Attouch, A. Cabot, P. Frankel and J. Peypouquet, Alternating proximal algorithms for constrained variational inequalities. Applications to domain decomposition for PDE's,, accepted in Nonlinear Analysis., (). Google Scholar

[5]

H. Attouch, P. Redont and A. Soubeyran, A new class of alternating proximal minimization algorithms with costs-to-move,, SIAM Journal on Optimization, 18 (2007), 1061. doi: 10.1137/060657248. Google Scholar

[6]

H. H. Bauschke, P. L. Combettes and S. Reich, The asymptotic behavior of the composition of two resolvents,, Nonlinear Analysis, 60 (2005), 283. Google Scholar

[7]

A. Cabot and P. Frankel, Alternating proximal algorithms with costs-to-move and asymptotically vanishing coupling,, accepted in Optimization., (). Google Scholar

[8]

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings,, Bull. Amer. Math. Soc., 73 (1967), 591. doi: 10.1090/S0002-9904-1967-11761-0. Google Scholar

[1]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[2]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[3]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial & Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[4]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic & Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[5]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[6]

Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341

[7]

Armen Shirikyan. Ergodicity for a class of Markov processes and applications to randomly forced PDE'S. II. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 911-926. doi: 10.3934/dcdsb.2006.6.911

[8]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[9]

M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial & Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29

[10]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[11]

Jie Sun, Honglei Xu, Min Zhang. A new interpretation of the progressive hedging algorithm for multistage stochastic minimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-8. doi: 10.3934/jimo.2019022

[12]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[13]

Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249

[14]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[15]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems & Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[16]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems & Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[17]

Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085

[18]

Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027

[19]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[20]

Mehdi Badsi, Martin Campos Pinto, Bruno Després. A minimization formulation of a bi-kinetic sheath. Kinetic & Related Models, 2016, 9 (4) : 621-656. doi: 10.3934/krm.2016010

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]