June  2012, 5(3): 559-566. doi: 10.3934/dcdss.2012.5.559

Exponential decay for solutions to semilinear damped wave equation

1. 

Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget du Lac, France

2. 

Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Received  March 2010 Revised  May 2010 Published  October 2011

This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Introducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].
Citation: Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559
References:
[1]

J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolutions equations,, Quart. J. Math. Oxford. Ser. (2), 28 (1977), 473.

[2]

A. Benaissa and S. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation,, NoDEA Nonlinear Differential Equations Appl., 12 (2005), 391. doi: 10.1007/s00030-005-0008-5.

[3]

J. Esquivel-Avila, Qualitative analysis of a nonlinear wave equation,, Discrete. Contin. Dyn. Syst., 10 (2004), 787. doi: 10.3934/dcds.2004.10.787.

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations,, Ann. I. H. Poincaré, 23 (2006), 185.

[5]

V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms,, J. Differential Equations, 109 (1994), 295. doi: 10.1006/jdeq.1994.1051.

[6]

A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems,, Arch. Rational Mech. Anal., 100 (1988), 191. doi: 10.1007/BF00282203.

[7]

R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms,, Nonlinear. Anal., 27 (1996), 1165. doi: 10.1016/0362-546X(95)00119-G.

[8]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type,, Hiroshima Math. J., 26 (1996), 475.

[9]

J. Esquivel-Avila, The dynamics of nonlinear wave equation,, J. Math. Anal. Appl., 279 (2003), 135. doi: 10.1016/S0022-247X(02)00701-1.

[10]

V. K. Kalantarov and O. A. Ladyzhenskaya, The occurence of collapse for quasilinear equations of parabolic and hyperbolic type,, J. Soviet. Math., 10 (1978), 53. doi: 10.1007/BF01109723.

[11]

M. Kopáčkova, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation,, Comment. Math. Univ. Carolin., 30 (1989), 713.

[12]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{\mathcalt\mathcal t}=-Au+\mathcal F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1. doi: 10.2307/1996814.

[13]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations,, SIAM J. Math. Anal., 5 (1974), 138. doi: 10.1137/0505015.

[14]

S. Messaoudi and B. Said Houari, Global non-existence of solutions of a class of wave equations with non-linear damping and source terms,, Math. Methods Appl. Sci., 27 (2004), 1687. doi: 10.1002/mma.522.

[15]

K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation,, Math. Methods Appl. Sci., 20 (1997), 151. doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.3.CO;2-S.

[16]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel J. Math., 22 (1975), 273. doi: 10.1007/BF02761595.

[17]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms,, C. R. Acad Sci. Paris Ser., 326 (1998), 191.

[18]

G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms,, J. Math. Anal. Appl., 239 (1999), 213. doi: 10.1006/jmaa.1999.6528.

[19]

E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation,, Arch. Ration. Mech. Anal., 149 (1999), 155. doi: 10.1007/s002050050171.

[20]

Z. Yang, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms,, Math. Meth. Appl. Sci., 25 (2002), 795. doi: 10.1002/mma.306.

[21]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial. Diff. Eq., 15 (1990), 205.

show all references

References:
[1]

J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolutions equations,, Quart. J. Math. Oxford. Ser. (2), 28 (1977), 473.

[2]

A. Benaissa and S. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation,, NoDEA Nonlinear Differential Equations Appl., 12 (2005), 391. doi: 10.1007/s00030-005-0008-5.

[3]

J. Esquivel-Avila, Qualitative analysis of a nonlinear wave equation,, Discrete. Contin. Dyn. Syst., 10 (2004), 787. doi: 10.3934/dcds.2004.10.787.

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations,, Ann. I. H. Poincaré, 23 (2006), 185.

[5]

V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms,, J. Differential Equations, 109 (1994), 295. doi: 10.1006/jdeq.1994.1051.

[6]

A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems,, Arch. Rational Mech. Anal., 100 (1988), 191. doi: 10.1007/BF00282203.

[7]

R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms,, Nonlinear. Anal., 27 (1996), 1165. doi: 10.1016/0362-546X(95)00119-G.

[8]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type,, Hiroshima Math. J., 26 (1996), 475.

[9]

J. Esquivel-Avila, The dynamics of nonlinear wave equation,, J. Math. Anal. Appl., 279 (2003), 135. doi: 10.1016/S0022-247X(02)00701-1.

[10]

V. K. Kalantarov and O. A. Ladyzhenskaya, The occurence of collapse for quasilinear equations of parabolic and hyperbolic type,, J. Soviet. Math., 10 (1978), 53. doi: 10.1007/BF01109723.

[11]

M. Kopáčkova, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation,, Comment. Math. Univ. Carolin., 30 (1989), 713.

[12]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{\mathcalt\mathcal t}=-Au+\mathcal F(u)$,, Trans. Amer. Math. Soc., 192 (1974), 1. doi: 10.2307/1996814.

[13]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations,, SIAM J. Math. Anal., 5 (1974), 138. doi: 10.1137/0505015.

[14]

S. Messaoudi and B. Said Houari, Global non-existence of solutions of a class of wave equations with non-linear damping and source terms,, Math. Methods Appl. Sci., 27 (2004), 1687. doi: 10.1002/mma.522.

[15]

K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation,, Math. Methods Appl. Sci., 20 (1997), 151. doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.3.CO;2-S.

[16]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations,, Israel J. Math., 22 (1975), 273. doi: 10.1007/BF02761595.

[17]

G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms,, C. R. Acad Sci. Paris Ser., 326 (1998), 191.

[18]

G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms,, J. Math. Anal. Appl., 239 (1999), 213. doi: 10.1006/jmaa.1999.6528.

[19]

E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation,, Arch. Ration. Mech. Anal., 149 (1999), 155. doi: 10.1007/s002050050171.

[20]

Z. Yang, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms,, Math. Meth. Appl. Sci., 25 (2002), 795. doi: 10.1002/mma.306.

[21]

E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,, Comm. Partial. Diff. Eq., 15 (1990), 205.

[1]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[2]

Bilgesu A. Bilgin, Varga K. Kalantarov. Non-existence of global solutions to nonlinear wave equations with positive initial energy. Communications on Pure & Applied Analysis, 2018, 17 (3) : 987-999. doi: 10.3934/cpaa.2018048

[3]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[4]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[5]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019027

[6]

M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure & Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495

[7]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[8]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[9]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[10]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[11]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[12]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[13]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[14]

Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure & Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923

[15]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553

[16]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337

[17]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[18]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[19]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control & Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[20]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]