June  2012, 5(3): 567-580. doi: 10.3934/dcdss.2012.5.567

Some singular perturbations results for semilinear hyperbolic problems

1. 

University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, CH-8057 Zurich

2. 

Department of Mathematics, University of M’sila, BP:166, 28000, M’sila, Algeria

Received  August 2010 Revised  December 2010 Published  October 2011

This paper is concerned with the asymptotic behaviour of the solutions of some semilinear hyperbolic problems. Using the monotonicity hypothesis, convergence results are shown in different spaces depending on the derivative directions of an arbitrary domain $\Omega .$ Some improvements are established when $\Omega $ is a cylinder.
Citation: Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567
References:
[1]

B. Brighi and S. Guesmia, Asymptotic behaviour of solutions of hyperbolic problems on a cylindrical domain,, in, 2007 (): 160. Google Scholar

[2]

M. Chipot, On some anisotropic singular perturbation problems,, Asymptot. Ana., 55 (2007), 125. Google Scholar

[3]

M. Chipot and S. Guesmia, On the asymptotic behavior of elliptic, anisotropic singular perturbations problems,, Commun. Pure Appl. Anal., 8 (2009), 179. Google Scholar

[4]

M. Chipot and S. Guesmia, On a class of integro-differential problems,, Commun. Pure Appl. Anal., 9 (2010), 1249. doi: 10.3934/cpaa.2010.9.1249. Google Scholar

[5]

M. Chipot and S. Guesmia, On some anisotropic, nonlocal, parabolic singular perturbations problems,, Applicable Analysis, (). Google Scholar

[6]

M. Chipot and S. Guesmia, Correctors for some asymptotic problems,, Proc. Steklov Inst. Math., 270 (2010), 263. doi: 10.1134/S0081543810030211. Google Scholar

[7]

M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions,, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 319. doi: 10.3934/dcdsb.2001.1.319. Google Scholar

[8]

M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique,, C. R. Math. Acad. Sci. Paris, 346 (2008), 21. Google Scholar

[9]

S. Guesmia, "Etude du Comportement Asymptotique de certaines Équations aux Dérivées Partielles dans des Domaines Cylindriques,", Thèse Université de Haute Alsace, (2006). Google Scholar

[10]

S. Guesmia, Some results on the asymptotic behavior for hyperbolic problems in cylindrical domains becoming unbounded,, J. Math. Anal. Appl., 341 (2008), 1190. doi: 10.1016/j.jmaa.2007.11.001. Google Scholar

[11]

S. Guesmia, Asymptotic behaviour of elliptic boundary-value problems with some small coefficients,, Electron. J. Differential Equations, 59 (2008), 1. Google Scholar

[12]

S. Guesmia and A. Sengouga, Anisotropic singular perturbation of hyperbolic problems,, Appl. Math. Comput. \textbf{217} (2011), 217 (2011), 8983. doi: 10.1016/j.amc.2011.03.104. Google Scholar

[13]

J.-L. Lions, "Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal,", Lecture Notes in Math., 323 (1973). Google Scholar

[14]

J.-L. Lions and W. A. Strauss, Some non-linear evolution equations,, Bull. Soc. Math. France, 93 (1965), 43. Google Scholar

[15]

W. A. Strauss, On continuity of functions with values in various Banach spaces,, Pacific J. Math., 19 (1966), 543. Google Scholar

show all references

References:
[1]

B. Brighi and S. Guesmia, Asymptotic behaviour of solutions of hyperbolic problems on a cylindrical domain,, in, 2007 (): 160. Google Scholar

[2]

M. Chipot, On some anisotropic singular perturbation problems,, Asymptot. Ana., 55 (2007), 125. Google Scholar

[3]

M. Chipot and S. Guesmia, On the asymptotic behavior of elliptic, anisotropic singular perturbations problems,, Commun. Pure Appl. Anal., 8 (2009), 179. Google Scholar

[4]

M. Chipot and S. Guesmia, On a class of integro-differential problems,, Commun. Pure Appl. Anal., 9 (2010), 1249. doi: 10.3934/cpaa.2010.9.1249. Google Scholar

[5]

M. Chipot and S. Guesmia, On some anisotropic, nonlocal, parabolic singular perturbations problems,, Applicable Analysis, (). Google Scholar

[6]

M. Chipot and S. Guesmia, Correctors for some asymptotic problems,, Proc. Steklov Inst. Math., 270 (2010), 263. doi: 10.1134/S0081543810030211. Google Scholar

[7]

M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions,, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 319. doi: 10.3934/dcdsb.2001.1.319. Google Scholar

[8]

M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique,, C. R. Math. Acad. Sci. Paris, 346 (2008), 21. Google Scholar

[9]

S. Guesmia, "Etude du Comportement Asymptotique de certaines Équations aux Dérivées Partielles dans des Domaines Cylindriques,", Thèse Université de Haute Alsace, (2006). Google Scholar

[10]

S. Guesmia, Some results on the asymptotic behavior for hyperbolic problems in cylindrical domains becoming unbounded,, J. Math. Anal. Appl., 341 (2008), 1190. doi: 10.1016/j.jmaa.2007.11.001. Google Scholar

[11]

S. Guesmia, Asymptotic behaviour of elliptic boundary-value problems with some small coefficients,, Electron. J. Differential Equations, 59 (2008), 1. Google Scholar

[12]

S. Guesmia and A. Sengouga, Anisotropic singular perturbation of hyperbolic problems,, Appl. Math. Comput. \textbf{217} (2011), 217 (2011), 8983. doi: 10.1016/j.amc.2011.03.104. Google Scholar

[13]

J.-L. Lions, "Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal,", Lecture Notes in Math., 323 (1973). Google Scholar

[14]

J.-L. Lions and W. A. Strauss, Some non-linear evolution equations,, Bull. Soc. Math. France, 93 (1965), 43. Google Scholar

[15]

W. A. Strauss, On continuity of functions with values in various Banach spaces,, Pacific J. Math., 19 (1966), 543. Google Scholar

[1]

Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179

[2]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[3]

Ogabi Chokri. On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1157-1178. doi: 10.3934/cpaa.2016.15.1157

[4]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[5]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[6]

Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003

[7]

Dušan D. Repovš. Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 401-411. doi: 10.3934/dcdss.2019026

[8]

T. Gnana Bhaskar, S. Köksal, V. Lakshmikantham. Generalized quasilinearization method for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1263-1275. doi: 10.3934/dcds.2003.9.1263

[9]

Mickaël D. Chekroun. Topological instabilities in families of semilinear parabolic problems subject to nonlinear perturbations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3723-3753. doi: 10.3934/dcdsb.2018075

[10]

Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

[11]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[12]

Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641

[13]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[14]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[15]

Akisato Kubo. Asymptotic behavior of solutions of the mixed problem for semilinear hyperbolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 59-74. doi: 10.3934/cpaa.2004.3.59

[16]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[17]

Felipe Alvarez, Juan Peypouquet. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1109-1128. doi: 10.3934/dcds.2009.25.1109

[18]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[19]

Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43

[20]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]