• Previous Article
    Survey on time periodic problem for fluid flow under inhomogeneous boundary condition
  • DCDS-S Home
  • This Issue
  • Next Article
    Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space
2012, 5(3): 641-656. doi: 10.3934/dcdss.2012.5.641

An explicit stable numerical scheme for the $1D$ transport equation

1. 

Commissariat à l’Énergie Atomique (CEA), DEN/DANS/DM2S/SFME/LETR, 91191 Gif-sur-Yvette, France

Received  August 2010 Revised  October 2010 Published  October 2011

We derive in this paper a numerical scheme in order to calculate solutions of $1D$ transport equations. This $2nd$-order scheme is based on the method of characteristics and consists of two steps: the first step is about the approximation of the foot of the characteristic curve whereas the second one deals with the computation of the solution at this point. The main idea in our scheme is to combine two $2nd$-order interpolation schemes so as to preserve the maximum principle. The resulting method is designed for classical solutions and is unconditionally stable.
Citation: Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641
References:
[1]

C. Bardos, M. Bercovier and O. Pironneau, The vortex method with finite elements,, Math. Comp., 36 (1981), 119. doi: 10.1090/S0025-5718-1981-0595046-3.

[2]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin), 52 (2006).

[3]

J. Burgers, "A Mathematical Model Illustrating the Theory of Turbulence,", edited by Richard von Mises and Theodore von Kármán, (1948), 171. doi: 10.1016/S0065-2156(08)70100-5.

[4]

S. Dellacherie, On a diphasic low Mach number system,, M2AN Math. Model. Numer. Anal., 39 (2005), 487. doi: 10.1051/m2an:2005020.

[5]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics,, J. Sci. Comput., 16 (2001), 479. doi: 10.1023/A:1013298408777.

[6]

J. Douglas Jr. and T. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,, SIAM J. Numer. Anal., 19 (1982), 871.

[7]

J. Douglas Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection,, Numer. Math., 83 (1999), 353. doi: 10.1007/s002110050453.

[8]

G. Fourestey, "Simulation Numérique et Contrôle Optimal d'Interactions Fluide Incompressible/Structure par une Méthode de Lagrange-Galerkin d'Ordre 2,'', Ph.D Thesis, (2002).

[9]

E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservation Laws,'', Applied Mathematical Sciences, 118 (1996).

[10]

F. Holly and A. Preissmann, Accurate calculation of transport in two dimensions,, J. Hydr. Div., 103 (1977), 1259.

[11]

R. LeVeque, "Numerical Methods for Conservation Laws," Second edition,, Lectures in Mathematics ETH Zürich, (1992).

[12]

J. Marsden and A. Chorin, "A Mathematical Introduction to Fluid Mechanics,", Springer-Verlag, (1979).

[13]

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12. doi: 10.1016/0021-9991(88)90002-2.

[14]

Y. Penel, "Étude Théorique et Numérique de la Déformation d'une Interface Séparant deux Fluides Non-Miscibles à Bas Nombre de Mach,", Ph.D Thesis, ().

[15]

Y. Penel, S. Dellacherie and O. Lafitte, Global solutions to the 1D Abstract Bubble Vibration model,, Submitted., ().

[16]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations,, Numer. Math., 38 (): 309. doi: 10.1007/BF01396435.

show all references

References:
[1]

C. Bardos, M. Bercovier and O. Pironneau, The vortex method with finite elements,, Math. Comp., 36 (1981), 119. doi: 10.1090/S0025-5718-1981-0595046-3.

[2]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin), 52 (2006).

[3]

J. Burgers, "A Mathematical Model Illustrating the Theory of Turbulence,", edited by Richard von Mises and Theodore von Kármán, (1948), 171. doi: 10.1016/S0065-2156(08)70100-5.

[4]

S. Dellacherie, On a diphasic low Mach number system,, M2AN Math. Model. Numer. Anal., 39 (2005), 487. doi: 10.1051/m2an:2005020.

[5]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics,, J. Sci. Comput., 16 (2001), 479. doi: 10.1023/A:1013298408777.

[6]

J. Douglas Jr. and T. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,, SIAM J. Numer. Anal., 19 (1982), 871.

[7]

J. Douglas Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection,, Numer. Math., 83 (1999), 353. doi: 10.1007/s002110050453.

[8]

G. Fourestey, "Simulation Numérique et Contrôle Optimal d'Interactions Fluide Incompressible/Structure par une Méthode de Lagrange-Galerkin d'Ordre 2,'', Ph.D Thesis, (2002).

[9]

E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservation Laws,'', Applied Mathematical Sciences, 118 (1996).

[10]

F. Holly and A. Preissmann, Accurate calculation of transport in two dimensions,, J. Hydr. Div., 103 (1977), 1259.

[11]

R. LeVeque, "Numerical Methods for Conservation Laws," Second edition,, Lectures in Mathematics ETH Zürich, (1992).

[12]

J. Marsden and A. Chorin, "A Mathematical Introduction to Fluid Mechanics,", Springer-Verlag, (1979).

[13]

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12. doi: 10.1016/0021-9991(88)90002-2.

[14]

Y. Penel, "Étude Théorique et Numérique de la Déformation d'une Interface Séparant deux Fluides Non-Miscibles à Bas Nombre de Mach,", Ph.D Thesis, ().

[15]

Y. Penel, S. Dellacherie and O. Lafitte, Global solutions to the 1D Abstract Bubble Vibration model,, Submitted., ().

[16]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations,, Numer. Math., 38 (): 309. doi: 10.1007/BF01396435.

[1]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[2]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[3]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

[4]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[5]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[6]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[7]

Jaemin Shin, Yongho Choi, Junseok Kim. An unconditionally stable numerical method for the viscous Cahn--Hilliard equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1737-1747. doi: 10.3934/dcdsb.2014.19.1737

[8]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[9]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[10]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[11]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[12]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[13]

Duanzhi Zhang. $P$-cyclic symmetric closed characteristics on compact convex $P$-cyclic symmetric hypersurface in R2n. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 947-964. doi: 10.3934/dcds.2013.33.947

[14]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[15]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[16]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[17]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\R^2$. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[18]

M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982

[19]

Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis. A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences & Engineering, 2014, 11 (4) : 679-721. doi: 10.3934/mbe.2014.11.679

[20]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]