\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The spectrum of travelling wave solutions to the Sine-Gordon equation

Abstract / Introduction Related Papers Cited by
  • We investigate the spectrum of the linear operator coming from the sine-Gordon equation linearized about a travelling kink-wave solution. Using various geometric techniques as well as some elementary methods from ODE theory, we find that the point spectrum of such an operator is purely imaginary provided the wave speed $c$ of the travelling wave is not $\pm 1$. We then compute the essential spectrum of the same operator.
    Mathematics Subject Classification: Primary: 35P30, 74J30 Secondary: 35P05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Abbondandolo, "Morse Theory for Hamiltonian Systems," Chapman & Hall/CRC Research Notes in Mathematics, 425, Chapman & Hall/CRC, Boca Raton, FL, 2001.

    [2]

    V. I. Arnol'd, On a characteristic class entering into conditions of quantization, Func. Anal. Appl., 1 (1967), 1-14.doi: 10.1007/BF01075861.

    [3]

    P. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, in "Dynamics Reported," Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., 2, Wiley, Chichester, 1989.

    [4]

    J. C. Bronski and M. A. Johnson, Krein signatures for the Faddeev-Takhtajan eigenvalue problem, Communications in Mathematical Physics, 288 (2009), 821-846.doi: 10.1007/s00220-009-0777-5.

    [5]

    R. Buckingham and P. Miller, Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation, Physica D, 237 (2008), 2296-2341.doi: 10.1016/j.physd.2008.02.010.

    [6]

    F. Magee, C. J. Barone, A. Esposito and A. Scott, Theory and applications of the sine-Gordon equation, Riv. Nuovo. Cimento, 1 (1971), 227-267.

    [7]

    G. Derks, A. Doelman, S. A. van Gils and T. Visser, Travelling waves in a singularly perturbed sine-Gordon equation, Physica D, 180 (2003), 40-70.doi: 10.1016/S0167-2789(03)00050-2.

    [8]

    V. Maslov, "Theory of Perturbations and Asymptotic Methods," French translation of Russian original, 1965, 1972.

    [9]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

    [10]

    J. Robbin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844.doi: 10.1016/0040-9383(93)90052-W.

    [11]

    M. Salerno, Discrete model for DNA-promoter dynamics, Physical Review A (3), 44 (1991), 5292-5297.doi: 10.1103/PhysRevA.44.5292.

    [12]

    A. Scott, F. Chu and D. McLaughlin, The soliton: A new concept in applied science, Proc. of the IEEE, 61 (1973), 1443-1483.doi: 10.1109/PROC.1973.9296.

    [13]

    A. Scott, Waveform stability on a nonlinear Klein-Gordon equation, Proc. Letters of the IEEE, (1969).

    [14]

    A. Scott, F. Chu and S. Reible, Magnetic-flux propagation on a Josephson transmission line, J. Applied Phys., 47 (1976), 3272-3286.doi: 10.1063/1.323126.

    [15]

    G. B. Whitham, "Linear and Nonlinear Waves," Reprint of the 1974 original, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return