-
Previous Article
Pointwise estimates for solutions of singular quasi-linear parabolic equations
- DCDS-S Home
- This Issue
-
Next Article
Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities
On a structure of the fixed point set of homogeneous maps
1. | Department of Mathematics |
2. | Bar-Ilan University |
3. | Ramat-Gan, 52900 |
References:
[1] |
B. Aupetit, Projections in real Banach algebras,, Bull. London Math. Soc., 13 (1981), 412.
doi: 10.1112/blms/13.5.412. |
[2] |
M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications,, Ann. of Math. (2), 88 (1968), 451.
|
[3] |
Z. Balanov and Y. Krasnov, Complex structures in real algebras I. Two-dimensional commutative case,, Comm. Algebra, 31 (2003), 4571.
doi: 10.1081/AGB-120022810. |
[4] |
Z. Balanov, Y. Krasnov and A. Kononovich, Projective dynamics of homogeneous systems: Local invariants, syzygies and global residue theorem,, Z, 55 (2012), 577. Google Scholar |
[5] |
A. Dold, "Lectures on Algebraic Topology,", Berlin, (1974).
|
[6] |
J. Esterle and J. Giol, Polynomial and polygonal connections between idempotents in finite dimensional real algebras,, Bull. London Math. Soc., 36 (2004), 378.
doi: 10.1112/S0024609303002820. |
[7] |
W. Fulton, "Intersection Theory,", Second edition, 2 (1998).
doi: 10.1007/978-1-4612-1700-8. |
[8] |
Z. V. Kovarik, Similarity and interpolation between projectors,, Acta Sci. Math. (Szeged), 39 (1977), 341.
|
[9] |
J. Llibre and V. Pilyugina, Number of invariant straight Lines for homogeneous polynomial vector fields of arbitrary degree and dimension,, J. Dyn. Diff. Equat., 21 (2009), 487.
doi: 10.1007/s10884-009-9141-x. |
[10] |
I. R. Shafarevich, "Basic Algebraic Geometry,", Berlin, 213 (1974).
|
[11] |
M. Shub and S. Smale, Complexity of Bézout's theorem. I. Geometric aspects,, J. Amer. Math. Soc., 6 (1993), 459.
doi: 10.2307/2152805. |
[12] |
A. Tretyakov and H. .Zołądek, A remark about homogeneous polynomial maps,, Topological Methods in Nonlinear Analysis, 19 (2002), 257.
|
[13] |
H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math., 66 (1957), 545.
|
[14] |
J. Zemánek, Idempotents in Banach algebras,, Bull. London Math. Soc., 11 (1979), 177.
doi: 10.1112/blms/11.2.177. |
show all references
References:
[1] |
B. Aupetit, Projections in real Banach algebras,, Bull. London Math. Soc., 13 (1981), 412.
doi: 10.1112/blms/13.5.412. |
[2] |
M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications,, Ann. of Math. (2), 88 (1968), 451.
|
[3] |
Z. Balanov and Y. Krasnov, Complex structures in real algebras I. Two-dimensional commutative case,, Comm. Algebra, 31 (2003), 4571.
doi: 10.1081/AGB-120022810. |
[4] |
Z. Balanov, Y. Krasnov and A. Kononovich, Projective dynamics of homogeneous systems: Local invariants, syzygies and global residue theorem,, Z, 55 (2012), 577. Google Scholar |
[5] |
A. Dold, "Lectures on Algebraic Topology,", Berlin, (1974).
|
[6] |
J. Esterle and J. Giol, Polynomial and polygonal connections between idempotents in finite dimensional real algebras,, Bull. London Math. Soc., 36 (2004), 378.
doi: 10.1112/S0024609303002820. |
[7] |
W. Fulton, "Intersection Theory,", Second edition, 2 (1998).
doi: 10.1007/978-1-4612-1700-8. |
[8] |
Z. V. Kovarik, Similarity and interpolation between projectors,, Acta Sci. Math. (Szeged), 39 (1977), 341.
|
[9] |
J. Llibre and V. Pilyugina, Number of invariant straight Lines for homogeneous polynomial vector fields of arbitrary degree and dimension,, J. Dyn. Diff. Equat., 21 (2009), 487.
doi: 10.1007/s10884-009-9141-x. |
[10] |
I. R. Shafarevich, "Basic Algebraic Geometry,", Berlin, 213 (1974).
|
[11] |
M. Shub and S. Smale, Complexity of Bézout's theorem. I. Geometric aspects,, J. Amer. Math. Soc., 6 (1993), 459.
doi: 10.2307/2152805. |
[12] |
A. Tretyakov and H. .Zołądek, A remark about homogeneous polynomial maps,, Topological Methods in Nonlinear Analysis, 19 (2002), 257.
|
[13] |
H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math., 66 (1957), 545.
|
[14] |
J. Zemánek, Idempotents in Banach algebras,, Bull. London Math. Soc., 11 (1979), 177.
doi: 10.1112/blms/11.2.177. |
[1] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[2] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[3] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[4] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[5] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[6] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[7] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[8] |
Jinsen Zhuang, Yan Zhou, Yonghui Xia. Synchronization analysis of drive-response multi-layer dynamical networks with additive couplings and stochastic perturbations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1607-1629. doi: 10.3934/dcdss.2020279 |
[9] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[10] |
Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002 |
[11] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[12] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[13] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[14] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[15] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[16] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[17] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[18] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[19] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[20] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]