February  2013, 6(1): 131-146. doi: 10.3934/dcdss.2013.6.131

Some remarks on the viscous approximation of crack growth

1. 

Universität Würzburg, Institut für Mathematik, Emil-Fischer-Straße 40, 97074 Würzburg, Germany

2. 

Università degli Studi di Udine, DIMI, Via delle Scienze 206, 33100 Udine, Italy

Received  May 2011 Revised  September 2011 Published  October 2012

We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity obtained in [16] by a vanishing viscosity approach, with free (but regular enough) crack path. We underline in particular the motivations for the choice of the class of admissible cracks and of the dissipation potential. Moreover, we extend the result to a model with applied forces depending on time.
Citation: Giuliano Lazzaroni, Rodica Toader. Some remarks on the viscous approximation of crack growth. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 131-146. doi: 10.3934/dcdss.2013.6.131
References:
[1]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333. doi: 10.1088/0266-5611/18/5/308.

[2]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5.

[3]

D. Bucur and N. Varchon, A duality approach for the boundary variation of Neumann problems,, SIAM J. Math. Anal., 34 (2002), 460. doi: 10.1137/S0036141002389579.

[4]

D. Bucur and J. P. Zolésio, $N$-dimensional shape optimization under capacitary constraint,, J. Differential Equations, 123 (1995), 504. doi: 10.1006/jdeq.1995.1171.

[5]

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications,, Arch. Ration. Mech. Anal., 167 (2003), 211. doi: 10.1007/s00205-002-0240-7.

[6]

G. Dal Maso, F. Ebobisse and M. Ponsiglione, A stability result for nonlinear Neumann problems under boundary variations,, J. Math. Pures Appl. (9), 82 (2003), 503.

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187.

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization,, Math. Models Methods Appl. Sci., 12 (2002), 1773. doi: 10.1142/S0218202502002331.

[9]

P. Destuynder and M. Djaoua, Sur une interprétation mathématique de l'intégrale de Rice en th\'eorie de la rupture fragile,, Math. Methods Appl. Sci., 3 (1981), 70.

[10]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163. doi: 10.1098/rsta.1921.0006.

[11]

P. Grisvard, "Singularities in Boundary Value Problems,'', Research Notes in Applied Mathematics, (1992).

[12]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529. doi: 10.1142/S0218202508003121.

[13]

V. A. Kovtunenko, Shape sensitivity of curvilinear cracks on interface to non-linear perturbations,, Z. Angew. Math. Phys., 54 (2003), 410. doi: 10.1007/s00033-003-0143-y.

[14]

C. Larsen, Epsilon-stable quasi-static brittle fracture evolution,, Comm. Pure Appl. Math., 63 (2010), 630.

[15]

G. Lazzaroni and R. Toader, Energy release rate and stress intensity factor in antiplane elasticity,, J. Math. Pures Appl. (9), 95 (2011), 565.

[16]

G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation,, Math. Models Methods Appl. Sci., 21 (2011), 2019.

[17]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.

[18]

A. Mielke, R. Rossi and G. Savaré, $BV$ solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., 18 (2012), 36. doi: 10.1051/cocv/2010054.

[19]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities,, Adv. Math., 3 (1969), 510.

[20]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895. doi: 10.1142/S0218202508003236.

[21]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492. doi: 10.1002/mana.200810803.

[22]

V. Šverák, On optimal shape design,, J. Math. Pures Appl. (9), 72 (1993), 537.

[23]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital., 2 (2009), 1.

show all references

References:
[1]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333. doi: 10.1088/0266-5611/18/5/308.

[2]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5.

[3]

D. Bucur and N. Varchon, A duality approach for the boundary variation of Neumann problems,, SIAM J. Math. Anal., 34 (2002), 460. doi: 10.1137/S0036141002389579.

[4]

D. Bucur and J. P. Zolésio, $N$-dimensional shape optimization under capacitary constraint,, J. Differential Equations, 123 (1995), 504. doi: 10.1006/jdeq.1995.1171.

[5]

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications,, Arch. Ration. Mech. Anal., 167 (2003), 211. doi: 10.1007/s00205-002-0240-7.

[6]

G. Dal Maso, F. Ebobisse and M. Ponsiglione, A stability result for nonlinear Neumann problems under boundary variations,, J. Math. Pures Appl. (9), 82 (2003), 503.

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187.

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization,, Math. Models Methods Appl. Sci., 12 (2002), 1773. doi: 10.1142/S0218202502002331.

[9]

P. Destuynder and M. Djaoua, Sur une interprétation mathématique de l'intégrale de Rice en th\'eorie de la rupture fragile,, Math. Methods Appl. Sci., 3 (1981), 70.

[10]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163. doi: 10.1098/rsta.1921.0006.

[11]

P. Grisvard, "Singularities in Boundary Value Problems,'', Research Notes in Applied Mathematics, (1992).

[12]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529. doi: 10.1142/S0218202508003121.

[13]

V. A. Kovtunenko, Shape sensitivity of curvilinear cracks on interface to non-linear perturbations,, Z. Angew. Math. Phys., 54 (2003), 410. doi: 10.1007/s00033-003-0143-y.

[14]

C. Larsen, Epsilon-stable quasi-static brittle fracture evolution,, Comm. Pure Appl. Math., 63 (2010), 630.

[15]

G. Lazzaroni and R. Toader, Energy release rate and stress intensity factor in antiplane elasticity,, J. Math. Pures Appl. (9), 95 (2011), 565.

[16]

G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation,, Math. Models Methods Appl. Sci., 21 (2011), 2019.

[17]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.

[18]

A. Mielke, R. Rossi and G. Savaré, $BV$ solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., 18 (2012), 36. doi: 10.1051/cocv/2010054.

[19]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities,, Adv. Math., 3 (1969), 510.

[20]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895. doi: 10.1142/S0218202508003236.

[21]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492. doi: 10.1002/mana.200810803.

[22]

V. Šverák, On optimal shape design,, J. Math. Pures Appl. (9), 72 (1993), 537.

[23]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital., 2 (2009), 1.

[1]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[2]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[3]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[4]

Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147

[5]

Annalisa Cesaroni, Matteo Novaga. Volume constrained minimizers of the fractional perimeter with a potential energy. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 715-727. doi: 10.3934/dcdss.2017036

[6]

Peter A. Hästö. On the existance of minimizers of the variable exponent Dirichlet energy integral. Communications on Pure & Applied Analysis, 2006, 5 (3) : 415-422. doi: 10.3934/cpaa.2006.5.415

[7]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[8]

Giorgio Fusco. On some elementary properties of vector minimizers of the Allen-Cahn energy. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1045-1060. doi: 10.3934/cpaa.2014.13.1045

[9]

Duvan Henao, Rémy Rodiac. On the existence of minimizers for the neo-Hookean energy in the axisymmetric setting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4509-4536. doi: 10.3934/dcds.2018197

[10]

Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure & Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803

[11]

Patricia Bauman, Guanying Peng. Analysis of minimizers of the Lawrence-Doniach energy for superconductors in applied fields. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2019112

[12]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[13]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[14]

Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575

[15]

Herbert Gajewski, Jens A. Griepentrog. A descent method for the free energy of multicomponent systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 505-528. doi: 10.3934/dcds.2006.15.505

[16]

Xia Chen, Tuoc Phan. Free energy in a mean field of Brownian particles. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 747-769. doi: 10.3934/dcds.2019031

[17]

Chjan C. Lim, Da Zhu. Variational analysis of energy-enstrophy theories on the sphere. Conference Publications, 2005, 2005 (Special) : 611-620. doi: 10.3934/proc.2005.2005.611

[18]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[19]

Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic & Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79

[20]

Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]