# American Institute of Mathematical Sciences

December  2013, 6(6): 1587-1598. doi: 10.3934/dcdss.2013.6.1587

## Dual formulation of a viscoplastic contact problem with unilateral constraint

 1 Departement of Mathematics, University of Craiov, A.I. Cuza Street 13, 200585, Craiova 2 Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan

Received  June 2012 Revised  September 2012 Published  April 2013

We consider a mathematical model which describes the contact between a viscoplastic body and an obstacle, the so-called foundation. The process is quasistatic, the contact is frictionless and is modelled with unilateral constraint. We derive a variational formulation of the model which leads to a history-dependent quasivariational inequality for stress field, associated to a time-dependent convex. Then we prove the unique weak solvability of the model. The proof is based on an abstract existence and uniqueness result obtained in [11].
Citation: Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587
##### References:
 [1] M. Anders, "Dual-Dual Formulations for Frictional Contact Problems in Mechanics,", Ph.D thesis, (2011).   Google Scholar [2] B. Awbi, M. Shillor and M. Sofonea, Dual formulation of a quasistatic viscoelastic contact problem with Tresca's friction law,, Applicable Analysis, 79 (2001), 1.  doi: 10.1080/00036810108840949.  Google Scholar [3] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance,, Q. J. Mechanics Appl. Math., 65 (2012), 555.  doi: 10.1093/qjmam/hbs016.  Google Scholar [4] N. Cristescu and I. Suliciu, "Viscoplasticity,", Translated from the Romanian, 5 (1982).   Google Scholar [5] W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,", AMS/IP Studies in Advanced Mathematics, 30 (2002).   Google Scholar [6] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovášek, "Solution of Variational Inequalities in Mechanics,", Translated from the Slovak by J. Jarník, 66 (1988).  doi: 10.1007/978-1-4612-1048-1.  Google Scholar [7] I. R. Ionescu and M. Sofonea, "Functional and Numerical Methods in Viscoplasticity,", Oxford Science Publications, (1993).   Google Scholar [8] N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", SIAM Studies in Applied Mathematics, 8 (1988).   Google Scholar [9] M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact,", Lecture Notes in Physics, 655 (2004).  doi: 10.1007/b99799.  Google Scholar [10] M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems,, Communications on Pure and Applied Analysis, 7 (2008), 645.  doi: 10.3934/cpaa.2008.7.645.  Google Scholar [11] M. Sofonea and A. Matei, History-dependent quasi-variational inequalities arising in contact mechanics,, European Journal of Applied Mathematics, 22 (2011), 471.  doi: 10.1017/S0956792511000192.  Google Scholar [12] J. J. Telega, Topics on unilateral contact problems of elasticity and inelasticity,, in, (1988), 340.   Google Scholar

show all references

##### References:
 [1] M. Anders, "Dual-Dual Formulations for Frictional Contact Problems in Mechanics,", Ph.D thesis, (2011).   Google Scholar [2] B. Awbi, M. Shillor and M. Sofonea, Dual formulation of a quasistatic viscoelastic contact problem with Tresca's friction law,, Applicable Analysis, 79 (2001), 1.  doi: 10.1080/00036810108840949.  Google Scholar [3] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance,, Q. J. Mechanics Appl. Math., 65 (2012), 555.  doi: 10.1093/qjmam/hbs016.  Google Scholar [4] N. Cristescu and I. Suliciu, "Viscoplasticity,", Translated from the Romanian, 5 (1982).   Google Scholar [5] W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,", AMS/IP Studies in Advanced Mathematics, 30 (2002).   Google Scholar [6] I. Hlaváček, J. Haslinger, J. Nečas and J. Lovášek, "Solution of Variational Inequalities in Mechanics,", Translated from the Slovak by J. Jarník, 66 (1988).  doi: 10.1007/978-1-4612-1048-1.  Google Scholar [7] I. R. Ionescu and M. Sofonea, "Functional and Numerical Methods in Viscoplasticity,", Oxford Science Publications, (1993).   Google Scholar [8] N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", SIAM Studies in Applied Mathematics, 8 (1988).   Google Scholar [9] M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact,", Lecture Notes in Physics, 655 (2004).  doi: 10.1007/b99799.  Google Scholar [10] M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems,, Communications on Pure and Applied Analysis, 7 (2008), 645.  doi: 10.3934/cpaa.2008.7.645.  Google Scholar [11] M. Sofonea and A. Matei, History-dependent quasi-variational inequalities arising in contact mechanics,, European Journal of Applied Mathematics, 22 (2011), 471.  doi: 10.1017/S0956792511000192.  Google Scholar [12] J. J. Telega, Topics on unilateral contact problems of elasticity and inelasticity,, in, (1988), 340.   Google Scholar
 [1] Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 [2] Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453 [3] Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem†. Evolution Equations & Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048 [4] Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 [5] Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887 [6] Mircea Sofonea, Meir Shillor. A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient. Communications on Pure & Applied Analysis, 2014, 13 (1) : 371-387. doi: 10.3934/cpaa.2014.13.371 [7] Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567 [8] S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155 [9] Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339 [10] Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116 [11] Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523 [12] Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1 [13] Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553 [14] Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 [15] Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579 [16] Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks & Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443 [17] Riccarda Rossi. Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1413-1466. doi: 10.3934/dcdss.2017075 [18] Amina Amassad, Mircea Sofonea. Analysis of a quasistatic viscoplastic problem involving tresca friction law. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 55-72. doi: 10.3934/dcds.1998.4.55 [19] José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85 [20] Wenguo Shen. Unilateral global interval bifurcation for Kirchhoff type problems and its applications. Communications on Pure & Applied Analysis, 2018, 17 (1) : 21-37. doi: 10.3934/cpaa.2018002

2019 Impact Factor: 1.233