February  2013, 6(1): 167-191. doi: 10.3934/dcdss.2013.6.167

A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems

1. 

Dipartimento di Matematica, Università di Brescia, Via Valotti 9, I-25133 Brescia, Italy

2. 

Dipartimento di Matematica “F. Casorati", Università di Pavia, Via Ferrata 1, I- 27100 Pavia, Italy

Received  September 2011 Revised  October 2011 Published  October 2012

The notion of BV solution to a rate-independent system was introduced in [8] to describe the vanishing viscosity limit (in the dissipation term) of doubly nonlinear evolution equations. Like energetic solutions [5] in the case of convex energies, BV solutions provide a careful description of rate-independent evolution driven by nonconvex energies, and in particular of the energetic behavior of the system at jumps.
    In this paper we study both notions in the one-dimensional setting and we obtain a full characterization of BV and energetic solutions for a broad family of energy functionals. In the case of monotone loadings we provide a simple and explicit characterization of such solutions, which allows for a direct comparison of the two concepts.
Citation: Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'', Oxford Mathematical Monographs, (2000).

[2]

M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Analysis, 13 (2006), 151.

[3]

I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnels,'', Dunod, (1974).

[4]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73. doi: 10.1007/s00526-004-0267-8.

[5]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.

[6]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, in, (2008), 87.

[7]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585. doi: 10.3934/dcds.2009.25.585.

[8]

A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var, 18 (2012), 36. doi: 10.1051/cocv/2010054.Published.

[9]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis,, in, (1999), 117.

[10]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151. doi: 10.1007/s00030-003-1052-7.

[11]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340. doi: 10.1137/090750809.

[12]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation,, Adv. Calc. Var., 3 (2010), 149.

[13]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492. doi: 10.1002/mana.200810803.

[14]

A. Visintin, "Differential Models of Hysteresis,'', Applied Mathematical Sciences, (1994).

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'', Oxford Mathematical Monographs, (2000).

[2]

M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Analysis, 13 (2006), 151.

[3]

I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnels,'', Dunod, (1974).

[4]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73. doi: 10.1007/s00526-004-0267-8.

[5]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.

[6]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, in, (2008), 87.

[7]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585. doi: 10.3934/dcds.2009.25.585.

[8]

A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var, 18 (2012), 36. doi: 10.1051/cocv/2010054.Published.

[9]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis,, in, (1999), 117.

[10]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151. doi: 10.1007/s00030-003-1052-7.

[11]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340. doi: 10.1137/090750809.

[12]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation,, Adv. Calc. Var., 3 (2010), 149.

[13]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492. doi: 10.1002/mana.200810803.

[14]

A. Visintin, "Differential Models of Hysteresis,'', Applied Mathematical Sciences, (1994).

[1]

Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256

[2]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[3]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[4]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[5]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[6]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[7]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[8]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[9]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[10]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[11]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[12]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[13]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

[14]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[15]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[16]

Hernán R. Henríquez, Claudio Cuevas, Juan C. Pozo, Herme Soto. Existence of solutions for a class of abstract neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2455-2482. doi: 10.3934/dcds.2017106

[17]

Nobuyuki Kenmochi, Jürgen Sprekels. Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Communications on Pure & Applied Analysis, 2002, 1 (4) : 495-511. doi: 10.3934/cpaa.2002.1.495

[18]

Amina Amassad, Mircea Sofonea. Analysis of some nonlinear evolution systems arising in rate-type viscoplasticity. Conference Publications, 1998, 1998 (Special) : 58-71. doi: 10.3934/proc.1998.1998.58

[19]

Marita Thomas. Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 235-255. doi: 10.3934/dcdss.2013.6.235

[20]

M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure & Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]