\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Fleck and Willis homogenization procedure in strain gradient plasticity

Abstract / Introduction Related Papers Cited by
  • We revisit the homogenization process for a heterogeneous small strain gradient plasticity model considered in [5]. We derive a precise homogenized behavior, independently of any kind of periodicity assumption and demonstrate that it reduces to a model studied in [8] when periodicity is re-introduced.
    Mathematics Subject Classification: Primary: 74Q05, 74C05; Secondary: 35B27.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.

    [2]

    M. F. Ashby, The deformation of plastically non-homogeneous alloys, Philos. Mag., 21 (1970), 399-424.doi: 10.1080/14786437008238426.

    [3]

    N. A. Fleck and J. W. Hutchinson, Strain gradient plasticity, Adv. Appl. Mech., 33 (1997), 295-361.doi: 10.1016/S0065-2156(08)70388-0.

    [4]

    N. A. Fleck and J. W. Hutchinson, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49 (2001), 2245-2271.doi: 10.1016/S0022-5096(01)00049-7.

    [5]

    N. A. Fleck and J. R. Willis, Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite, J. Mech. Phys. Solids, 52 (2004), 1855-1888.doi: 10.1016/j.jmps.2004.02.001.

    [6]

    G. A. Francfort and S. M\"uller, Combined effects of homogenization and singular perturbations in elasticity, J. Reine Angew. Math., 454 (1994), 1-35.doi: 10.1515/crll.1994.454.1.

    [7]

    A. Garroni, G. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., 12 (2010), 1231-1266.doi: 10.4171/JEMS/228.

    [8]

    A. Giacomini and A. Musesti, Two-scale homogenization for a model in strain gradient plasticity, ESAIM Control Optim. Calc. Var, 17 (2011), 1035-1065.doi: 10.1051/cocv/2010036.

    [9]

    P. Gudmundson, A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, 52 (2004), 1379-1406.doi: 10.1016/j.jmps.2003.11.002.

    [10]

    M. E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations, J. Mech. Phys. Solids 53 (2005), 1624-1649.

    [11]

    A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations. Vol. II'' (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005), 461-559.

    [12]

    A. Mielke and A. M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Anal., 39 (2007), 642-668.doi: 10.1137/060672790.

    [13]

    F. Murat and L. Tartar, $H$-convergence, in "Topics in the Mathematical Modelling of Composite Materials,'' Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, 31 (1997), 21-43.

    [14]

    G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.doi: 10.1137/0520043.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return