2013, 6(3): 657-667. doi: 10.3934/dcdss.2013.6.657

Arithmetic progressions -- an operator theoretic view

1. 

KdV Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands

2. 

University of Tübingen, Mathematics Institute, Auf der Morgenstelle 10, D-72076 Tübingen

Received  February 2010 Revised  May 2010 Published  December 2012

Motivated by the recent Green--Tao theorem on arithmetic progressions in the primes, we discuss some of the basic operator theoretic techniques used in its proof. In particular, we obtain a complete proof of Szemerédi's theorem for arithmetic progressions of length $3$ (Roth's theorem) and the Furstenberg--Sárközy theorem.
Citation: Tanja Eisner, Rainer Nagel. Arithmetic progressions -- an operator theoretic view. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 657-667. doi: 10.3934/dcdss.2013.6.657
References:
[1]

V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems,, J. Amer. Math. Soc., 9 (1996), 725.

[2]

V. Bergelson, A. Leibman and E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem,, Adv. Math., 219 (2008), 369.

[3]

M. Einsiedler and T. Ward, "Ergodic Theory: With a View Towards Number Theory,", Springer-Verlag London, (2011). doi: 10.1007/978-0-85729-021-2.

[4]

T. Eisner, "Stability of Operators and Operator Semigroups,", Birkhäuser Verlag, (2010).

[5]

T. Eisner, B. Farkas, M. Haase and R. Nagel, "Operator Theoretic Aspects of Ergodic Theory,", Graduate Texts in Mathematics, (2013).

[6]

T. Eisner, B. Farkas, R. Nagel and A. Serény, Weakly and almost weakly stable $C_0$-semigroups,, Int. J. Dyn. Syst. Differ. Equ., 1 (2007), 44. doi: 10.1504/IJDSDE.2007.013744.

[7]

H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory,", Princeton University Press, (1981).

[8]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions,, J. Analyse Math., 31 (1977), 204.

[9]

H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi's theorem,, Bull. Amer. Math. Soc., 7 (1982), 527. doi: 10.1090/S0273-0979-1982-15052-2.

[10]

H. Furstenberg and B. Weiss, A mean ergodic theorem for $\frac{1}N sum_{n=1}^N f(T^nx) g(T^{n^2}x)$,, Convergence in Ergodic Theory and Probability, (1996), 193.

[11]

B. Green, "Lectures on Ergodic Theory, Part III,", , ().

[12]

B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions,, Annals Math., 167 (2008), 481. doi: 10.4007/annals.2008.167.481.

[13]

B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds,, Annals Math., 161 (2005), 397. doi: 10.4007/annals.2005.161.397.

[14]

B. Kra, The Green-Tao Theorem on arithmetic progressions in the primes: An ergodic point of view,, Bull. Amer. Math. Soc., 43 (2006), 3. doi: 10.1090/S0273-0979-05-01086-4.

[15]

B. Kra, Ergodic methods in additive combinatorics,, Additive combinatorics, 43 (2007), 103.

[16]

K. Petersen, "Ergodic Theory,", Cambridge University Press, (1983).

[17]

H. H. Schaefer, "Banach Lattices and Positive Operators,", Springer-Verlag, (1974).

[18]

T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes,, International Congress of Mathematicians, I (2007), 581. doi: 10.4171/022-1/22.

[19]

T. Tao, "Topics in Ergodic Theory,", 2008, ().

[20]

T. Tao, "The Van der Corput Trick, and Equidistribution on Nilmanifolds,", in Topics in Ergodic Theory, (2008).

show all references

References:
[1]

V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems,, J. Amer. Math. Soc., 9 (1996), 725.

[2]

V. Bergelson, A. Leibman and E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem,, Adv. Math., 219 (2008), 369.

[3]

M. Einsiedler and T. Ward, "Ergodic Theory: With a View Towards Number Theory,", Springer-Verlag London, (2011). doi: 10.1007/978-0-85729-021-2.

[4]

T. Eisner, "Stability of Operators and Operator Semigroups,", Birkhäuser Verlag, (2010).

[5]

T. Eisner, B. Farkas, M. Haase and R. Nagel, "Operator Theoretic Aspects of Ergodic Theory,", Graduate Texts in Mathematics, (2013).

[6]

T. Eisner, B. Farkas, R. Nagel and A. Serény, Weakly and almost weakly stable $C_0$-semigroups,, Int. J. Dyn. Syst. Differ. Equ., 1 (2007), 44. doi: 10.1504/IJDSDE.2007.013744.

[7]

H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory,", Princeton University Press, (1981).

[8]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions,, J. Analyse Math., 31 (1977), 204.

[9]

H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi's theorem,, Bull. Amer. Math. Soc., 7 (1982), 527. doi: 10.1090/S0273-0979-1982-15052-2.

[10]

H. Furstenberg and B. Weiss, A mean ergodic theorem for $\frac{1}N sum_{n=1}^N f(T^nx) g(T^{n^2}x)$,, Convergence in Ergodic Theory and Probability, (1996), 193.

[11]

B. Green, "Lectures on Ergodic Theory, Part III,", , ().

[12]

B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions,, Annals Math., 167 (2008), 481. doi: 10.4007/annals.2008.167.481.

[13]

B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds,, Annals Math., 161 (2005), 397. doi: 10.4007/annals.2005.161.397.

[14]

B. Kra, The Green-Tao Theorem on arithmetic progressions in the primes: An ergodic point of view,, Bull. Amer. Math. Soc., 43 (2006), 3. doi: 10.1090/S0273-0979-05-01086-4.

[15]

B. Kra, Ergodic methods in additive combinatorics,, Additive combinatorics, 43 (2007), 103.

[16]

K. Petersen, "Ergodic Theory,", Cambridge University Press, (1983).

[17]

H. H. Schaefer, "Banach Lattices and Positive Operators,", Springer-Verlag, (1974).

[18]

T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes,, International Congress of Mathematicians, I (2007), 581. doi: 10.4171/022-1/22.

[19]

T. Tao, "Topics in Ergodic Theory,", 2008, ().

[20]

T. Tao, "The Van der Corput Trick, and Equidistribution on Nilmanifolds,", in Topics in Ergodic Theory, (2008).

[1]

Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113

[2]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[3]

Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143

[4]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[5]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[6]

Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99

[7]

Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237

[8]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[9]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[10]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[11]

Zuohuan Zheng, Jing Xia, Zhiming Zheng. Necessary and sufficient conditions for semi-uniform ergodic theorems and their applications. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 409-417. doi: 10.3934/dcds.2006.14.409

[12]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[13]

Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333

[14]

Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109

[15]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[16]

Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377

[17]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[18]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[19]

Gary Froyland, Simon Lloyd, Anthony Quas. A semi-invertible Oseledets Theorem with applications to transfer operator cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3835-3860. doi: 10.3934/dcds.2013.33.3835

[20]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]