April  2013, 6(4): 837-860. doi: 10.3934/dcdss.2013.6.837

On mathematical contributions of Petr Petrovich Zabreĭko

1. 

Department of Mathematical Sciences, University of Texas at Dallas

2. 

Richardson, Texas, 75080

3. 

Mathematics Institute, National Academy of Sciences of Belarus

4. 

11 Surganov str., Minsk 220072

5. 

Department of Mathematical Sciences

6. 

University of Texas at Dallas

7. 

Richardson, TX 75080

8. 

Department of Mechanics and Mathematics, Belorussian State University

9. 

4 Nezavisimosti sq., Minsk 220050

Received  February 2012 Published  December 2012

N/A
Citation: Zalman Balanov, I. Gaishun, V. Gorohovik, Wieslaw Krawcewicz, A. Lebedev. On mathematical contributions of Petr Petrovich Zabreĭko. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 837-860. doi: 10.3934/dcdss.2013.6.837
References:
[1]

M. A. Krasnosel'skiĭ, A. I. Perov, A. I. Povolockiĭ and P. P. Zabreĭko, "Vectorniye Polya na Ploskosti,", (Russian). Gos. Izdat. Fiz.-Mat. Lit., (1963).

[2]

P. P. Zabreĭko, "On Calculation of the Index of Singular Point of a Completely Continuous Vector Field,", (Russian), (1964).

[3]

M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, "Integral'nye Operatory v Prostranstvakh Summiruemykh Funktsii,", (Russian), (1966).

[4]

P. P. Zabreĭko, Nonlinear integral operators,, (Russian), 8 (1966), 3.

[5]

P. P. Zabreĭko, "Studies on Nonlinear Integral Operators in Ideal Spaces of Functions,", (Russian), (1968).

[6]

P. P. Zabreĭko, A. I. Koshelev, M. A. Krasnosel'skiĭS. G. Mikhlin, L. S. Rakovscik and V. Ja. Stetsenko, "Integral'nye Uravneniya. A Reference Book,", (Russian), (1968).

[7]

M. A. Krasnosel'skiĭ, G. M. Vainikko, P. P. Zabreĭko, Ya. B. Rutitskiĭ and V. Ja. Stetsenko, "Priblizhennoye Reshenie Operatornikh Uravnenii,", (Russian), (1969).

[8]

M. Sc. Birman, N. Ya. Vilenkin, E. A. Gorin, P. P. Zabreĭko, I. S. Iokhvidov, M. I. Kadets', A. G. Kostyuchenko, M. A. Krasnosel'skiĭ, S. G. Kreĭn, B. S. Mityagin, Yu. I. Petunin, Ya. B. Rutitskiĭ, E. M. Semenov, V. I. Sobolev, V. Ya. Stetsenko, L. D. Faddeev and E. S. Tsitlanadze, "Functional Analysis. A Reference Book,", (Russian), (1972).

[9]

M. A. Krasnosel'skiĭ and P. P. Zabreĭko, "Geometricheskie Metodi Nelineinogo Analiza,", (Russian), (1975).

[10]

J. Appell and P. P. Zabreĭko, "Nonlinear Superposition Operators,", Cambridge University Press, (1990). doi: 10.1017/CBO9780511897450.

[11]

J. Appell, E. De Pascale, H. T. Nguyen and P. P. Zabreĭko, "Multivalued Superpositions,", Dissertationes Mathematica, 345 (1995).

[12]

J. Appell, A. Vignoli and P. P. Zabrejko, Implicit function theorems and nonlinear integral equations,, Exposition. Math., 14 (1996), 385.

[13]

P. P. Zabrejko, $K$-metric and $K$-normed linear spaces: Survey,, Collect. Math., 48 (1997), 825.

[14]

P. P. Zabrejko, Rotation of vector fields: Definition, basic properties, and calculation,, in, (1997), 445.

[15]

J. Appell, A. S. Kalitvin and P. P. Zabrejko, "Partial Integral Operators and Integro-Differential Equations,", (Pure and Applied Mathematics: A Series of Monographs and Textbooks, (2000).

[16]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Calculation of the index of an isolated stationary point of a completely continuous vector field,, (Russian), 141 (1961), 292.

[17]

P. P. Zabreĭko, On calculating the Poincarè index,, (Russian), 145 (1962), 979.

[18]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Calculation of the index of a fixed point of a vector field,, (Russian), 5 (1964), 509.

[19]

P. P. Zabreĭko, On the continuity of a nonlinear integral operator,, (Russian), 5 (1964), 958.

[20]

P. P. Zabreĭko, Some properties of linear operators acting in $L_p$,, (Russian), 159 (1964), 975.

[21]

P. P. Zabreĭko and E. I. Pustyl'nik, On the continuity and complete continuity of nonlinear integral operators acting in $L_p$,, (Russian), 19 (1964), 204.

[22]

P. P. Zabreĭko, Complete continuity of $U_0$-bounded linear operators in the spaces $L_p$,, (Russian), 124 (1964), 110.

[23]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, On the $L$-characteristics of operators,, (Russian), 19 (1964), 187.

[24]

P. P. Zabreĭko, The continuity and complete continuity of operators of P.S. Uryson,, (Russian), 161 (1965), 1007.

[25]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and E. I. Pustyl'nik, On fractional powers of elliptic operators,, (Russian), 165 (1965), 990.

[26]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, On the theory of implicit functions in Banach spaces,, (Russian), 21 (1966), 235.

[27]

P. P. Zabreĭko, On differentiability of nonlinear operators in the spaces $L_p$,, Dokl. Akad. Nauk SSSR, 166 (1966), 1039.

[28]

P. P. Zabreĭko and T. Nurekenov, Existence of non-negative $\omega$-periodic solutions of systems of differential equations,, (Russian), 22 (1966), 32.

[29]

P. P. Zabreĭko and I. B. Ledovskaya, Higher order approximations of the averaging method of N.N. Bogoljubov-N.M. Krylov,, (Russian), 171 (1966), 262.

[30]

P. P. Zabreĭko, Volterra integral operators,, (Russian), 22 (1967), 167.

[31]

P. P. Zabreĭko, Uniqueness theorems for ordinary differential equations,, (Russian), 3 (1967), 341.

[32]

P. P. Zabreĭko, R. I. Kacurovskiĭ and M. A. Krasnosel'skiĭ, On a fixed point principle for operators in a Hilbert space,, (Russian), 1 (1967), 93.

[33]

P. P. Zabreĭko and A. I. Povolockiĭ, Theorems on the existence and uniqueness of solutions of Hammerstein equations,, (Russian), 176 (1967), 759.

[34]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and V. Y. Stecenko, Estimates of the spectral radius of positive linear operators,, (Russian), 1 (1967), 461.

[35]

P. P. Zabreĭko, The spectral radius of Volterra integral operators,, (Russian), 7 (1967), 281.

[36]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, A way of obtaining new fixed point principles,, (Russian), 176 (1967), 1233.

[37]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Simple solutions of operator equations,, (Russian), 2 (1968), 31.

[38]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, On the problem of bifurcation points,, (Russian), 2 (1968), 41.

[39]

P. P. Zabreĭko and P. Obradovich, On the theory of Banach spaces of vector-valued functions,, (Russian), 10 (1968), 12.

[40]

P. P. Zabreĭko and A. I. Povolotckiĭ, The eigenvectors of Hammerstein's operator,, (Russian), 183 (1968), 758.

[41]

P. P. Zabreĭko and B. P. Kac, On the Nekrasov-Nazarov method of solving nonlinear equations in the case of two-dimensional degeneracy,, (Russian), 3 (1968), 73.

[42]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, On the branching equations,, (Russian), 3 (1968), 80.

[43]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Asymptotic approximations of implicit functions,, (Russian), 3 (1968), 94.

[44]

P. P. Zabreĭko and I. B. Ledovskaya, Existence theorems for equations in Banach spaces and the averaging principle,, (Russian), 3 (1968), 122.

[45]

P. P. Zabreĭko, A theorem for semiadditive functionals,, (Russian), 3 (1969), 86.

[46]

P. P. Zabreĭko, Y. S. Kolesov and M. A. Krasnosel'skiĭ, Implicit functions and the averaging principle of N. N. Bogoljubov and N. M. Krylov,, (Russian), 184 (1969), 526.

[47]

P. P. Zabreĭko and I. B. Ledovskaya, On the basis of the method of N. N. Bogoljubov - N. M. Krylov for ordinary differential equations,, (Russian), 5 (1969), 240.

[48]

V. S. Burd, P. P. Zabreĭko, Ju. S. Kolesov and M. A. Krasnosel'skiĭ, The averaging principle and bufurcation of almost periodic solutions,, (Russian), 187 (1969), 1219.

[49]

P. P. Zabreĭko and A. V. Zafievskiĭ, A certain class of semigroups,, (Russian), 189 (1969), 934.

[50]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabreĭko, E. A. Lifsic and A. V. Pokrovskiĭ, An operator-hysterant,, (Russian), 190 (1970), 34.

[51]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and E. A. Lifsic, An oscillator on an elasto-plastic element,, (Russian), 190 (1970), 266.

[52]

P. P. Zabreĭko and A. I. Povolockiĭ, On the theory of Hammerstein equations,, (Russian), 22 (1970), 150.

[53]

P. P. Zabreĭko and A. I. Povolockiĭ, Bifurcation points of Hammerstein's equation,, (Russian), 194 (1970), 496.

[54]

V. S. Burd, P. P. Zabreĭko, Ju. S. Kolesov and M. A. Krasnosel'skiĭ, Small combined oscillations and the averaging principle,, (Russian), (1969), 120.

[55]

P. P. Zabreĭko and S. O. Strygina, Cesari's equation and Galerkin's method for finding periodic solutions of ordinary differential equations,, (Ukrainian), 7 (1970), 583.

[56]

P. P. Zabreĭko, Schaefer's method in the theory of Hammerstein integral equations,, (Russian), 84 (1971), 456.

[57]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, The solvability of nonlinear operator equations,, (Russian), 5 (1971), 42.

[58]

P. P. Zabreĭko and A. I. Povolockiĭ, Remark on exaistence theorems for the solution of the Hammerstein equation,, (Russian), 404 (1971), 374.

[59]

P. P. Zabreĭko and A. I. Povolockiĭ, The eigenfunctions of the Hammerstein operator,, (Russian), 7 (1971), 1294.

[60]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and Ju. V. Pokornyĭ, A certain class of positive linear operators,, (Russian), 5 (1971), 9.

[61]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Iterations of operators and fixed points,, (Russian), 196 (1971), 1006.

[62]

P. P. Zabreĭko and B. P. Kac, The Nekrasov-Nazarov method of solving nonlinear operator equations,, Sibirsk. Mat. Z., 12 (1971), 1026.

[63]

P. P. Zabreĭko and A. I. Povolockiĭ, The bifurcation points of the Hammerstein equation,, (Russian), 6 (1971), 43.

[64]

P. P. Zabreĭko and Ju. I. Fetisov, The method of small parameter for hyperbolic equations,, (Russian), 8 (1972), 823.

[65]

P. P. Zabreĭko and A. I. Povolckiĭ, Quasilinear operators and the Hammerstein equations,, (Russian), 12 (1972), 453.

[66]

P. P. Zabreĭko and A. I. Povolockiĭ, Second solutions of Hammerstein equations,, (Russian), 2 (1973), 31.

[67]

P. P. Zabreĭko, n the theory of periodic vector fields,, (Russian), 2 (1973), 24.

[68]

P. P. Zabreĭko and N. Ja. Kruglyak, A proof of a theorem of M. Artin,, (Russian), 7 (1974), 134.

[69]

P. P. Zabreĭko and Ju. I. Fetisov, An application of Bogoljubov-Krylov averaging method to hyperbolic equations,, (Russian), 7 (1974), 150.

[70]

P. P. Zabreĭko, Semigroups and totally bounded sets,, (Russian), 8 (1974), 8.

[71]

P. P. Zabreĭko, Ideal spaces of functions,, (Russian), 8 (1974), 12.

[72]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, The rotation of vector fields with superpositions and iterations of operators,, (Russian), 12 (1974), 23.

[73]

P. P. Zabreĭko and N. V. Senchakova, Computation of the Poincaré index for plane vector fields,, (Russian), 12 (1974), 38.

[74]

P. P. Zabreĭko, The Cauchy problem for ordinary differential equations in Banach spaces,, (Russian), 11 (1975), 53.

[75]

P. P. Zabreĭko and Ju. V. Pokornyĭ, A special metric space related to a convex set,, (Russian), 1 (1976), 48.

[76]

P. P. Zabreĭko and E. I. Smirnov, On the closed graph theorem,, (Russian), 18 (1977), 306.

[77]

P. P. Zabreĭko, On the continuous dependence on a parameter of Green's operator of the bonded problem for a differential equation on the axis,, (Russian), 2 (1977), 137.

[78]

P. P. Zabreĭko and A. I. Povolockiĭ, The Hammerstein operator and Orlicz spaces,, (Russian), 2 (1977), 39.

[79]

P. P. Zabreĭko and S. V. Smickih, On the problem of calculating the index of a zero singular point of completely continuous vector fields with positive operator,, (Russian), 2 (1977), 52.

[80]

P. P. Zabreĭko and S. V. Smickih, A theorem of M. G. Krein and M. A. Rutman,, (Russian), 13 (1979), 81.

[81]

P. P. Zabreĭko and N. M. Isakov, Reduction principle for the method of successive approximations and invariant manifolds,, (Russian), 20 (1979), 539.

[82]

P. P. Zabreĭko and A. I. Smirnov, Solvability of the Cauchy problem for ordinary differential equations in Banach spaces,, (Russian), 15 (1979), 2085.

[83]

P. P. Zabreĭko and A. V. Zafievskiĭ, Conditions for the extremum of smooth functions,, (Russian), 4 (1979), 76.

[84]

P. P. Zabreĭko and I. N. Rjabikova, On the theory of higher order derivatives for operators in Banach spaces,, (Russian), 4 (1979), 87.

[85]

Yu. Appell and P. P. Zabreĭko, Condensing operators in the theory of implicit functions,, (Russian), 165 (1980), 3.

[86]

P. P. Zabreĭko and A. V. Zafievskiĭ, Conditions for a second order extremum,, (Russian), 166 (1980), 58.

[87]

P. P. Zabreĭko, On the homotopy theory of periodic vector fields,, (Russian), 162 (1980), 3.

[88]

P. P. Zabreĭko, On approximate solving the operator equations,, (Russian), (1980), 51.

[89]

P. P. Zabreĭko, On the theory of integral equations. I,, (Russian), 162 (1981), 53.

[90]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and A. I. Povolotskiĭ, Spiderwebs of eigenvectors of potential operators,, (Russian), 162 (1981), 62.

[91]

P. P. Zabreĭko and A. V. Zafievskiĭ, On general conditions for a minimum,, (Russian), 263 (1982), 798.

[92]

P. P. Zabreĭko and P. P. Zlepko, A generalization of the Newton-Kantorovich method on an equation with nondifferentiable operators,, (Russian) Ukrain. Mat. Z., 34 (1982), 365.

[93]

P. P. Zabreĭko, On the theory of integral operators. II,, (Russian), 169 (1982), 80.

[94]

P. P. Zabreĭko and V. P. Tikhonov, Determining equations and the relatedness principle,, (Russian), 24 (1983), 79.

[95]

Yu. Appell and P. P. Zabrejko, On a theorem of M. A. Krasnosel'skiĭ,, Nonlinear Analysis: Theory, 7 (1983), 695. doi: 10.1016/0362-546X(83)90026-3.

[96]

J. Appell and P. P. Zabreĭko, Sharp upper bounds for a superposition operator,, (Russian), 27 (1983), 686.

[97]

P. P. Zabreĭko and E. I. Smirnov, Principles of uniform boundedness,, (Russian), 35 (1984), 287.

[98]

P. P. Zabreĭko, On the theory of integral operators. III,, (Russian), 124 (1983), 8.

[99]

P. P. Zabreĭko and N. A. Evkhuta, Convergence of A. M. Samoĭlenko's method of successive approximations for finding periodic solutions,, (Russian), 29 (1985), 15.

[100]

N. A. Evkhuta and P. P. Zabreĭko, Samoĭlenko's method for finding periodic solutions of quasilinear differential equations in a Banach space,, (Russian), 37 (1985), 162.

[101]

P. P. Zabreĭko, The domain of convergence of the method of successive approximations for linear equations,, (Russian), 29 (1985), 201.

[102]

J. Appell and P. P. Zabreĭko, Analytic superposition operators,, (Russian), 29 (1985), 878.

[103]

J. Appell and P. P. Zabrejko, On analyticity conditions for the superposition operator in ideal Banach spaces,, Boll. Un. Mat. Ital. C (6), 4 (1985), 279.

[104]

F. Dedagich and P. P. Zabreĭko, On superposition operators in $l_p$ spaces,, (Russian), 28 (1987), 86.

[105]

P. P. Zabreĭko and Nguen Khong Tkhai, On the theory of Orlicz spaces of vector-functions,, (Russian), 31 (1987), 116.

[106]

P. P. Zabreĭko and Ya. V. Radyno, Applications of fixed-point theory to the Cauchy problem for equations with degrading operators,, (Russian), 23 (1987), 345.

[107]

P. P. Zabreĭko, Ideal spaces of vector functions,, (Russian), 31 (1987), 298.

[108]

P. P. Zabreĭko and D. F. Nguen, The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates,, Numer. Funct. Anal. Optim., 9 (1987), 671. doi: 10.1080/01630568708816254.

[109]

J. Appell and P. P. Zabrejko, On the degeneration of the class of differentiable superposition operators in function spaces,, Analysis, 7 (1987), 305.

[110]

U. U. Diallo and P. P. Zabreĭko, The Bogolyubov averaging principle in the problem of bounded solutions of Barbashin's integro-differential equations,, (Russian), (1987), 263.

[111]

P. P. Zabreĭko and T. A. Makarevich, A Generalization of the Banach - Caccioppoli principle to operators in pseudometric spaces,, (Russian), 23 (1987), 1497.

[112]

P. P. Zabreĭko and T. A. Makarevich, The fixed point theorem and a theorem of L.V. Ovsyannikov,, (Russian), 3 (1987), 53.

[113]

J. Appell, O. W. Diallo and P. P. Zabrejko, On linear integro-differential equations of Barbashin type in spaces of continuous and measurable functions,, J. of Integral Equations Appl., 1 (1988), 227. doi: 10.1216/JIE-1988-1-2-227.

[114]

J. Appell, I. Massabo, A. Vignoli and P. P. Zabrejko, Lipschitz and Darbo conditions for the superposition operator in ideal spaces,, Ann. Mat. Pura Appl., 152 (1988), 123. doi: 10.1007/BF01766144.

[115]

P. P. Zabreĭko and Nguen Khong Tkhaĭ, Linear integral operators in ideal spaces of vector functions,, (Russian), 32 (1988), 587.

[116]

P. P. Zabreĭko and Dyk Fien Nguyen, Pták's estimates in the Newton-Kantorovich method for operator equations,, (Russian), 3 (1989), 8.

[117]

P. P. Zabreĭko and B. A. Godunov, The nature of the convergence of successive approximations for equations with smooth operators,, (Russian), 33 (1989), 583.

[118]

P. P. Zabreĭko, Existence and uniqueness theorems for solutions of the Cauchy problem for differential equations with worsening operators,, (Russian), 33 (1989), 1068.

[119]

J. Appell and P. P. Zabrejko, Continuity properties of the superposition operator,, J. Austral. Math. Soc. Ser. A, 47 (1989), 186.

[120]

J. Appell and P. P.Zabrejko, Boundedness properties of the superposition operator,, Bulletin of the Polish Academy of Sciences. Mathematics, 37 (1989), 363.

[121]

J. Appell, Nguyen Hong Thai and P. P. Zabrejko, General existence theorems for quasilinear elliptic systems without monotonicity,, Journal of Mathematical Analysis and Applications, 145 (1990), 26. doi: 10.1016/0022-247X(90)90428-I.

[122]

U. U. Diallo and P. P. Zabreĭko, Conditions for the asymptotic stability of solutions of Barbashin integro-differential equations,, (Russian), 34 (1990), 101.

[123]

P. P. Zabreĭko, Asymptotic properties of the iterations of linear operators and their applications to approximate methods and to the theory of fixed points,, (Russian), 34 (1990), 485.

[124]

P. P. Zabreĭko and Nguen Khong Tkhai, Cones of vector-functions in Orlicz spaces of vector-functions. Normality and reproducibility properties,, (Russian), 3 (1990), 30.

[125]

P. P. Zabrejko and Nguen Khong Tkhai, Duality theory for ideal spaces of vector-valued functions,, (Russian), 311 (1990), 1296.

[126]

P. P. Zabrejko and Nguen Khong Tkhai, New theorems on the solvability of Hammerstein operator and integral equations,, (Russian), 312 (1990), 28.

[127]

P. P. Zabrejko and S. A. Tersian, On the variational method for solvability of nonlinear integral equations of Hammerstein type,, (Russian), 43 (1990), 9.

[128]

J. Appell and P. P. Zabrejko, Boundedness properties of the superposition operator,, Bulletin of the Polish Academy of Sciences. Mathematics, 37 (1989), 363.

[129]

P. P. Zabrejko, Error estimates for successive approximations and spectral properties of linear operators,, Numerical Functional Analysis and Applications, 11 (1990), 823. doi: 10.1080/01630569008816404.

[130]

P. P. Zabreĭko, The principle of contraction mappings in K-metric and locally convex spaces,, (Russian), 34 (1990), 1065.

[131]

S. A. Tersian and P. P. Zabrejko, Hammerstein integral equations with nontrivial solutions,, Results Math., 19 (1991), 179.

[132]

N. A. Evkhuta and P. P. Zabrejko, The Poincarè method and Samojlenko method for the construction of periodic solutions to ordinary differential equations,, Mathematische Nachrichten, 153 (1991), 85. doi: 10.1002/mana.19911530109.

[133]

J. Appell, E. De Pascale and P. P. Zabrejko, Multivalued superposition operators,, Rend. Sem. Mat. Univ. Padova, 86 (1991), 213.

[134]

P. P. Zabreĭko and Nguen Dyk Fien, Estimates for the rate of convergence of the Newton-Kantorovich method for equations with Hölder linearizations,, (Russian), 2 (1991), 8.

[135]

P. P. Zabrejko and Nguen Khong Tkhai, New results concerning the solvability of Hammerstein operational and integral equations,, (Russian), 27 (1991), 672.

[136]

P. P. Zabrejko and L. G. Tretyakov, Periodic solutions of a quasilinear telegraph equation,, (Russian), 27 (1991), 815.

[137]

J. Appell, E. De Pascale and P. P. Zabrejko, On the application of the Newton-Kantorovic method to nonlinear integral equations of Uryson type,, Numerical Functional Analysis and Optimization, 12 (1991), 271. doi: 10.1080/01630569108816428.

[138]

P. P. Zabreĭko and Nguen Khong Tkhaĭ, Some order properties in Orlicz spaces of vector functions,, (Russian), (1991), 32.

[139]

Nguyen Hong Thai and P. P. Zabrejko, The ideal spaces of vector functions and their applications,, Proceedings of II Conference on Function Spaces (Poznan), (1991), 112.

[140]

P. P. Zabrejko, Abstract relationship principles in the theory of operator equations,, Nonlinear Analysis: Theory, 16 (1991), 817. doi: 10.1016/0362-546X(91)90146-R.

[141]

P. P. Zabreĭko, $C$-theory of linear Fredholm integral equations of the second kind,, (Russian), 3 (1991), 38.

[142]

P. P. Zabreĭko, Implicit function theorems in the theory of nonlinear integral equations,, (Russian), 35 (1995), 975.

[143]

J. Appell, Nguen Hong Thai and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions. I,, Indag. Math., 2 (1991), 385. doi: 10.1016/0019-3577(91)90025-3.

[144]

J. Appell, Nguen Hong Thai and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions. II,, Indag. Math., 2 (1991), 397.

[145]

P. P. Zabreĭko, Iterative methods for solving operator equations and their applications to differential equations,, (Russian), (1991), 193.

[146]

J. Appell and P. P. Zabrejko, Linear differential equations in scales of Banach spaces,, Analysis, 12 (1992), 31.

[147]

P. P. Zabrejko and Nguen Van Min', The group of characteristic operators and its applications in the theory of linear ordinary differential equations,, (Russian), 324 (1992), 24.

[148]

P. P. Zabreĭko and Nguen Van Min', Exponential dichotomy and integral manifolds in the theory of flows and their applications,, (Russian), 324 (1992), 515.

[149]

J. Appell, Nguen Hong Thai and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions. III,, Indag. Math., 3 (1992), 1. doi: 10.1016/0019-3577(92)90023-E.

[150]

P. P. Zabrejko, Iterations methods for the solution of operator equations and their application to ordinary and partial differential equations,, Rendiconti di Matematica. Ser. 7. Roma, 11 (1992), 381.

[151]

J. Appell, A. Carbone and P. P. Zabrejko, Kantorovic majorants for nonlinear operators and applications to Uryson integral equations,, Rendiconti di Matematica. Ser. 7. Roma, 12 (1992), 675.

[152]

J. Appell, O Jong Guk and P. P. Zabrejko, On the Weyl decomposition of the space $D_p^ (O)$ and otrhogonal projections of Navier-Stokes equations,, Annali Univ. Ferrara. Ser. 7: Sci. Mat., 38 (1992), 133.

[153]

P. P. Zabreĭko and Yu. V. Lysenko, A modified Newton-Kantorovich method for finding the minima of smooth functionals,, (Russian), 37 (1993), 106.

[154]

J. Appell, E. De Pascale and P. P. Zabrejko, On the application of the method of successive approximations and the Newton-Kantorovich method to nonlinear functional-integral equations,, Advances in Mathematical Sciences and Applications, 21 (1993), 25.

[155]

B. Aulbach, Nguyen Van Minh and P. P. Zabreiko, A generalization of the monodromy operator for non-periodic linear differential equations,, Differential Equations and Dynamical Systems, 1 (1993), 211.

[156]

N. T. Demidovich, P. P. Zabreĭko and Yu. V. Lysenko, A remark on the Newton-Kantorovich method for nonlinear equations with Hölder linearizations,, (Russian), 4 (1993), 22.

[157]

P. P. Zabreĭko and Yu. V Lysenko, Theorems on the approximation of continuous functions with values in Banach spaces,, (Russian), 4 (1993), 28.

[158]

J. Appell, A. Kufner, O Jong Guk and P. P. Zabrejko, Growth properties of Sobolev space functions over unbounded domains,, Annali Univ. Ferrara. Ser. 7 Sci. Mat., 39 (1993), 55.

[159]

A. B. Antonevich, J. Appell and P. P. Zabrejko, Some remarks on the asymptotic behaviour of iterations of linear operators,, Studia Math., 112 (1994), 1.

[160]

P. P. Zabrejko and T. V. Savchenko, The Banach - Caccioppoli principle and the implicit function theorem in a binormed space and its applications to differential equations,, Diff. Uravn., 30 (1994), 381.

[161]

J. Appell, A. S. Kalitvin and P. P. Zabrejko, Boundary value problems for integro-differential equations of Barbashin type,, Journal of Integral Equations and Applications, 6 (1994), 1. doi: 10.1216/jiea/1181075787.

[162]

J. Appell, E. De Pascale and P. P. Zabrejko, Some remarks on Banach limits,, Atti Sem. Mat. Fis. Univ. Modena, 42 (1994), 273.

[163]

A. K. Abdulazizov, E. De Pascale and P. P. Zabrejko, Il teorema di Bohl sulle soluzioni limitate: Sistemi di infinite equazioni differenziali ordinarie,, Rendiconti Istituto Lombardo, 128 (1994), 37.

[164]

A. Vignoli and P. P. Zabrejko, Some remarks on the Hildebrandt-Graves theorem,, Zeitschrift für Analysis und ihre Anwendungen, 14 (1995), 89.

[165]

E. A. Barkova and P. P. Zabreĭko, Roumieu spaces and the Cauchy problem for linear differential equations with unbounded operators,, (Russian), 39 (1995), 19.

[166]

P. P. Zabreĭko, Implicit functions and operators that are monotone in the sense of Minty in Banach-valued spaces,, (Russian), 39 (1995), 17.

[167]

P. P. Zabreĭko and E. V. Shpilenya, Theorems on the solvability of the Cauchy problem for abstract parabolic equations,, (Russian), 39 (1995), 13.

[168]

B. A. Godunov and P. P. Zabrejko, Geometric characteristics for convergence and asymptotics of successive approximations of equations with smooth operators,, Studia Mathematica, 116 (1995), 225.

[169]

P. P. Zabrejko and V. B. Moroz, New solvability theorems for Hammerstein integral equations with potential nonlinearities,, Differencial'nye Uravnenija, 31 (1995), 690.

[170]

P. P. Zabrejko, $L_2$-theory of Fredholm linear integral equations of the second kind,, Differencial'nye Uravnenija, 31 (1995), 1498.

[171]

J. Appell, E. De Pascale, A. S. Kalitvin and P. P. Zabrejko, On the application of the Newton- Kantorovich method to nonlinear partial integral equations,, Zeitschrift Anal. Anw., 15 (1996), 397.

[172]

V. B. Moroz and P. P. Zabrejko, A variant of the mountain pass theorem and its applications to Hammerstein integral equations,, Zeitschrift für Mathematik, 15 (1996), 985.

[173]

P. P. Zabrejko, The mean theorem for differential mappings in Banach spaces,, Integral Transforms and Special Functions, 4 (1996), 153. doi: 10.1080/10652469608819103.

[174]

J. Appell, E. De Pascale, Ju. V. Lysenko and Zabrejko, New results on Newton-Kantorovich approximations with applications to nonlinear integral equations,, Numerical Functional Analysis and Optimization, 18 (1997), 1. doi: 10.1080/01630569708816744.

[175]

A. Vignoli, P. P. Zabreĭko and V. B. Moroz, Critical values of lower-bounded functionals, and Hammerstein equations,, (Russian), 41 (1997), 16.

[176]

E. A. Barkova and P. P. Zabrejko, Linear differential equations with unbounded operators in Banach spaces,, Zeitschrift für Analysis und ihre Anwendungen, 17 (1998), 339.

[177]

E. De Pascale and P. P. Zabrejko, The convergence of the Newton-Kantorovich method under Vertgeim conditions: A new improvement,, Zeitschrift für Analysis und ihre Anwendungen, 17 (1998), 271.

[178]

V. V. Gorokhovik and P. P. Zabreĭko, Fréchet differentiability of multimappings,, (Russian), 1 (1998), 34.

[179]

P. P. Zabrejko, The fixed point theory and the Cauchy problem for partial differential equations,, (Russian), 1 (1998), 93.

[180]

P. P. Zabreĭko and A. P. Kovalenok, Computation of the index of a singular point of a pseudomonotone vector field. The case of Hilbert spaces,, (Russian), 1 (1998), 107.

[181]

S. V. Zhestkov and P. P. Zabreiko, The Banach-Caccioppoli and Kantorovich principles for the Cauchy problem in the theory of nonlinear systems with partial derivatives,, (Russian), 4 (2000), 48.

[182]

P. P., Zabreĭko and A. P. Kovalenok, On the computation of the asymptotic index of pseudo-monotone vector fields,, (Russian), 44 (2000), 11.

[183]

J. Appell, E. De Pascale and P. P. Zabreĭko, On the unique solvability of Hammerstein integral equations with non-symmetric kernels,, in, 40 (2000), 27.

[184]

F. Cianciaruso, E. De Pascale and P. P. Zabreiko, Some remarks on Newton-Kantorovič approximations,, Atti Sem. Mat. Fis. Univb. Modena, 48 (2000), 207.

[185]

E. De Pascale, P. P. Zabreĭko and N. I. Shirokanova, New conditions for the solvability of Lyapunov-Schmidt integral equations,, (Russian), 44 (2000), 14.

[186]

P. P. Zabrejko, Mark aleksandrovich krasnosel'skii - my teacher and friend,, Izv. Ross. Akad. Estestv. Nauk: Matem., 4 (2000), 5.

[187]

D. Caponetti, E. De Pascale and P. P. Zabreĭko, On the Newton-Kantorovič method in $K$-normed linear spaces,, Rendiconti del Circolo Matematico di Palermo, 49 (2000), 545. doi: 10.1007/BF02904265.

[188]

P. P. Zabreiko and Yu. V. Lysenko, Explicit formulas for higher derivatives of inverse functions in Banach spaces,, (Russian), 4 (2000), 40.

[189]

Z. Balanov, W. Krawcewicz, A. Kushkuley and P. P. Zabreĭko, On a local Lipschitz constant of the maps related to $LU$-decomposition,, Zeitschrift für Analysis und ihre Anwendungen, 19 (2000), 1947.

[190]

E. V. Frolova, A. S. Kalitvin and P. P. Zabrejko, Operator functions with partial integrals on $\mathcal C$ and $L_p$,, Journal of Electrotechnics and Mathematics, 6 (2001), 29.

[191]

P. P. Zabreĭko and Yu. V. Lysenko, Exact formulas for higher-order derivatives of inverse functions in Banach spaces,, (Russian), 45 (2001), 27.

[192]

P. P. Zabreĭko and A. P. Kovalenok, On the existence of nontrivial solutions for a class of elliptic problems,, (Russian), 45 (2001), 34.

[193]

P. P. Zabreĭko and A. P. Kovalenok, On the solvability and existence of nontrivial solutions of the two-dimensional Dirichlet problem,, (Russian), 45 (2001), 5.

[194]

S. V. Zhestkov and P. P. Zabreĭko, On a converse theorem to the fixed point principle in the theory of the Cauchy problem for linear normal partial differential systems,, (Russian), 45 (2001), 12.

[195]

P. P. Zabreiko and Yu. V. Lysenko, Explicit formulas of higher derivatives of implicit functions in Banach spaces,, (Russian), 8 (2001), 114.

[196]

P. P. Zabreiko, On the theory of focusing operators,, (Russian), 3 (2002), 5.

[197]

P. P. Zabreĭko and Yu. V. Lysenko, Explicit formulas for higher-order derivatives of implicit functions,, (Russian), 46 (2002), 8.

[198]

P. P. Zabreĭko, On the Poincaré index of essentially singular points of analytic functions,, (Russian), 46 (2002), 5.

[199]

P. P. Zabreĭko, A. S. Kalitvin and E.V. Frolova, On partial integral equations in the space of continuous functions,, (Russian), 38 (2002), 538. doi: 10.1023/A:1016371902018.

[200]

P. P. Zabreĭko, On global homeomorphism theorem for Gateaux differentiable maps,, (Russian), 1 (2002), 5.

[201]

D. Caponetti and P. P. Zabreĭko, Convex operators in ordered Banach spaces and applications to the Newton-Kantorovič method in $K$-normed linear spaces,, Atti Sem. Mat. Fis. Univ. Modena, 50 (2002), 259.

[202]

E. De Pascale and P. P. Zabreiko, The chord method in Banach spaces and some applications,, Nonlinear Functional Analysis and Applications, 7 (2002), 659.

[203]

E. A. Alekhno and P. P. Zabreĭko, Quasipositive elements and indecomposable operators in ideal spaces. I,, (Russian), 4 (2002), 5.

[204]

E. A. Alekhno and P. P. Zabreĭko, Quasipositive elements and indecomposable operators in ideal spaces. II,, (Russian), 1 (2003), 5.

[205]

P. P. Zabreiko, M.A. Krasnosel'skiĭ and his books. I,, (Russian), (2003), 82.

[206]

S. V. Zhestkov and P. P. Zabrejko, On the nonlocal solvability of the Cauchy problem for quasilinear normal first-order partial differential equations,, Differencial'nye Uravnenya, 39 (2003), 1001. doi: 10.1023/B:DIEQ.0000009203.74756.fd.

[207]

P. P. Zabreĭko and T. V. Tarasik, The Banach-Caccioppoli principle for operators in $K$-normal linear spaces, and stochastic differential equations,, (Russian), 48 (2004), 41.

[208]

E. De Pascale and P.P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions,, Fixed Point Theory, 5 (2004), 117.

[209]

E. A. Barkova and P. P. Zabrejko, An analog of the Peano theorem for fractional-order quasilinear equations in compactly embedding scales of Bansach spaces,, Differencial'nye Uravnenya, 40 (2004), 522. doi: 10.1023/B:DIEQ.0000035793.44173.88.

[210]

P. P. Zabreĭko and O. N. Kirsanova-Evkhuta, A new theorem on the convergence of the minimal residual method,, (Russian), 2 (), 5.

[211]

E. A. Alekhno and P. P. Zabreiko, Weak continuity of superposition operator in ideal spaces with continuous measure,, (Russian), 2 (2004), 21.

[212]

P. P. Zabrejko and N. I. Shirokanova, New existence theorems for Lyapunov-Schmidt integral equations,, Differencial'nye Uravnenya, 40 (2004), 1198. doi: 10.1007/s10625-005-0005-9.

[213]

S. V. Zhestkov and P. P. Zabreĭko, On the construction of invariant Banach spaces and the nonlocal solvability of the Cauchy problem,, (Russian), 3 (2004), 112.

[214]

P. P. Zabreĭko O. N. Kirsanova-Evkhuta, The minimal residual method in Banach spaces,, (Russian), 49 (2005), 5.

[215]

E. A. Alekhno and P. P. Zabreĭko, On the weak continuity of the superposition operator in the space $L_\infty$,, (Russian), 2 (2005), 17.

[216]

P. P. Zabreĭko and A. S. Tykun, The Conley index and the method of guiding functions in the theory of bounded solutions of differential equations,, (Russian), 3 (2005), 13.

[217]

V. V. Gorokhovik and P. P. Zabreiko, On Fréchet differentiability of multifunction,, Optimization, 54 (2005), 391. doi: 10.1080/02331930500100148.

[218]

O. N. Evkhuta and P. P. Zabreĭko, New convergence theorems for Krasnosel'skiĭ-Rutitskiĭ approximations for operator equations in Banach spaces,, (Russian), 49 (2005), 17.

[219]

S. V. Zhestkov and P. P. Zabreĭko, A constructive version of the Meyers theorem for analytic ordinary differential equations,, (Russian), 5 (2005), 11.

[220]

S. V. Zhestkov and P. P. Zabreĭko, The majorant method and the fixed point principle in the nonlocal theory of the Cauchy problem for normal partial differential systems,, (Russian), 42 (2006), 233. doi: 10.1134/S001226610602011X.

[221]

P. P. Zabreĭko and O. Yu. Kushel, The Gantmakher-Kreĭn theorem for binonnegative operators in spaces of functions,, (Russian), 50 (2006), 9.

[222]

P. P. Zabreiko, Some elementary fixed point principle,, in, (2006), 255.

[223]

E. A. Barkova and P. P. Zabreĭko, The Cauchy problem for differential equations of fractional order with deteriorating right-hand sides,, (Russian), 42 (2006), 1132. doi: 10.1134/S0012266106080143.

[224]

S. V. Zhestkov and P. P. Zabreĭko, Nonlocal solvability of the Cauchy problem for a matrix system of ordinary differential equations of Abel-Bernoulli type and the Meyers theorem,, (Russian), 4 (2006), 33.

[225]

S. V. Zhestkov and P. P. Zabreiko, To a problem of nonlocal solvability of the Cauchy problem for Fedorov-Bernouli matrix system with partial derivatives,, (Russian), 14 (2006), 48.

[226]

A. V. Guminskaya and P. P. Zabreĭko, On the calculation of the relative index of a singular point in the nondegenerate case,, (Russian), 1 (2007), 4.

[227]

P. P. Zabreiko, "Applied Equivariant Degree. With a Preface in the Book: Z. Balanov, W. Krawcewicz and H. Steinlein,", (Differential Equations & Dynamical Systems), (2006).

[228]

P. P. Zabreĭko and A. V. Krivko-Krasko, General conditions for a local minimum of smooth functions of two variables,, (Russian), 51 (2007), 11.

[229]

P. P. Zabreĭko and A. V. Krivko-Krasko, Conditions for the local minimum of functions of two variables and the Newton diagram,, (Russian), 51 (2007), 30.

[230]

P. P. Zabreĭko, The open Leontief-Ford model,, Tr. Inst. Mat. (Minsk), 15 (2007), 15.

[231]

P. P. Zabreĭko, On a theorem of M. A. Krasnosel'skiĭ,, (Russian), 52 (2008), 15.

[232]

O. N. Evkhuta and P. P. Zabreiko, A class of iterative methods for solving nonlinear operator equations,, , (2008), 1.

[233]

A. P. Kovalenok and P. P. Zabreiko, The Skrypnik degree theory and boundary value problems,, in, (2008), 181.

[234]

P. P. Zabreĭko and O. Yu. Kushel, Gantmacher - Krein theorem .for bi-nonnegative operators in ideal spaces,, (Russian), 17 (2009), 1.

[235]

P. P. Zabreĭko and O. Yu. Kushel, On a class of linear operators in ideal spaces,, (Russian), (2009), 53.

[236]

P. P. Zabreĭko and Yu. V. Korots, Analysis of implicit successive approximations,, (Russian), 53 (2009), 33.

[237]

P. P. Zabreĭko and A. V. Krivko-Krasko, Systems of scalar equations and implicit functions. I,, Tr. Inst. Mat. (Minsk), 17 (2009), 3.

[238]

E. A. Barkova and P. P. Zabreĭko, Nonlocal theorems on the Cauchy problem for fractional-order differential equations,, (Russian), 54 (2010), 8.

[239]

P. P. Zabreĭko and A. V. Krivko-Krasko, Systems of scalar equations and implicit functions. II,, Tr. Inst. Mat. (Minsk), 18 (2010), 36.

[240]

O. Yu. Kushel and P. P. Zabreiko, Gantmacher - Kreĭn theorem for $2$-totally nonnegative operators in ideal spaces,, Operator Theory: Advances and Applications, 202 (2010), 395. doi: 10.1007/978-3-0346-0158-0_22.

show all references

References:
[1]

M. A. Krasnosel'skiĭ, A. I. Perov, A. I. Povolockiĭ and P. P. Zabreĭko, "Vectorniye Polya na Ploskosti,", (Russian). Gos. Izdat. Fiz.-Mat. Lit., (1963).

[2]

P. P. Zabreĭko, "On Calculation of the Index of Singular Point of a Completely Continuous Vector Field,", (Russian), (1964).

[3]

M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, "Integral'nye Operatory v Prostranstvakh Summiruemykh Funktsii,", (Russian), (1966).

[4]

P. P. Zabreĭko, Nonlinear integral operators,, (Russian), 8 (1966), 3.

[5]

P. P. Zabreĭko, "Studies on Nonlinear Integral Operators in Ideal Spaces of Functions,", (Russian), (1968).

[6]

P. P. Zabreĭko, A. I. Koshelev, M. A. Krasnosel'skiĭS. G. Mikhlin, L. S. Rakovscik and V. Ja. Stetsenko, "Integral'nye Uravneniya. A Reference Book,", (Russian), (1968).

[7]

M. A. Krasnosel'skiĭ, G. M. Vainikko, P. P. Zabreĭko, Ya. B. Rutitskiĭ and V. Ja. Stetsenko, "Priblizhennoye Reshenie Operatornikh Uravnenii,", (Russian), (1969).

[8]

M. Sc. Birman, N. Ya. Vilenkin, E. A. Gorin, P. P. Zabreĭko, I. S. Iokhvidov, M. I. Kadets', A. G. Kostyuchenko, M. A. Krasnosel'skiĭ, S. G. Kreĭn, B. S. Mityagin, Yu. I. Petunin, Ya. B. Rutitskiĭ, E. M. Semenov, V. I. Sobolev, V. Ya. Stetsenko, L. D. Faddeev and E. S. Tsitlanadze, "Functional Analysis. A Reference Book,", (Russian), (1972).

[9]

M. A. Krasnosel'skiĭ and P. P. Zabreĭko, "Geometricheskie Metodi Nelineinogo Analiza,", (Russian), (1975).

[10]

J. Appell and P. P. Zabreĭko, "Nonlinear Superposition Operators,", Cambridge University Press, (1990). doi: 10.1017/CBO9780511897450.

[11]

J. Appell, E. De Pascale, H. T. Nguyen and P. P. Zabreĭko, "Multivalued Superpositions,", Dissertationes Mathematica, 345 (1995).

[12]

J. Appell, A. Vignoli and P. P. Zabrejko, Implicit function theorems and nonlinear integral equations,, Exposition. Math., 14 (1996), 385.

[13]

P. P. Zabrejko, $K$-metric and $K$-normed linear spaces: Survey,, Collect. Math., 48 (1997), 825.

[14]

P. P. Zabrejko, Rotation of vector fields: Definition, basic properties, and calculation,, in, (1997), 445.

[15]

J. Appell, A. S. Kalitvin and P. P. Zabrejko, "Partial Integral Operators and Integro-Differential Equations,", (Pure and Applied Mathematics: A Series of Monographs and Textbooks, (2000).

[16]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Calculation of the index of an isolated stationary point of a completely continuous vector field,, (Russian), 141 (1961), 292.

[17]

P. P. Zabreĭko, On calculating the Poincarè index,, (Russian), 145 (1962), 979.

[18]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Calculation of the index of a fixed point of a vector field,, (Russian), 5 (1964), 509.

[19]

P. P. Zabreĭko, On the continuity of a nonlinear integral operator,, (Russian), 5 (1964), 958.

[20]

P. P. Zabreĭko, Some properties of linear operators acting in $L_p$,, (Russian), 159 (1964), 975.

[21]

P. P. Zabreĭko and E. I. Pustyl'nik, On the continuity and complete continuity of nonlinear integral operators acting in $L_p$,, (Russian), 19 (1964), 204.

[22]

P. P. Zabreĭko, Complete continuity of $U_0$-bounded linear operators in the spaces $L_p$,, (Russian), 124 (1964), 110.

[23]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, On the $L$-characteristics of operators,, (Russian), 19 (1964), 187.

[24]

P. P. Zabreĭko, The continuity and complete continuity of operators of P.S. Uryson,, (Russian), 161 (1965), 1007.

[25]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and E. I. Pustyl'nik, On fractional powers of elliptic operators,, (Russian), 165 (1965), 990.

[26]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, On the theory of implicit functions in Banach spaces,, (Russian), 21 (1966), 235.

[27]

P. P. Zabreĭko, On differentiability of nonlinear operators in the spaces $L_p$,, Dokl. Akad. Nauk SSSR, 166 (1966), 1039.

[28]

P. P. Zabreĭko and T. Nurekenov, Existence of non-negative $\omega$-periodic solutions of systems of differential equations,, (Russian), 22 (1966), 32.

[29]

P. P. Zabreĭko and I. B. Ledovskaya, Higher order approximations of the averaging method of N.N. Bogoljubov-N.M. Krylov,, (Russian), 171 (1966), 262.

[30]

P. P. Zabreĭko, Volterra integral operators,, (Russian), 22 (1967), 167.

[31]

P. P. Zabreĭko, Uniqueness theorems for ordinary differential equations,, (Russian), 3 (1967), 341.

[32]

P. P. Zabreĭko, R. I. Kacurovskiĭ and M. A. Krasnosel'skiĭ, On a fixed point principle for operators in a Hilbert space,, (Russian), 1 (1967), 93.

[33]

P. P. Zabreĭko and A. I. Povolockiĭ, Theorems on the existence and uniqueness of solutions of Hammerstein equations,, (Russian), 176 (1967), 759.

[34]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and V. Y. Stecenko, Estimates of the spectral radius of positive linear operators,, (Russian), 1 (1967), 461.

[35]

P. P. Zabreĭko, The spectral radius of Volterra integral operators,, (Russian), 7 (1967), 281.

[36]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, A way of obtaining new fixed point principles,, (Russian), 176 (1967), 1233.

[37]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Simple solutions of operator equations,, (Russian), 2 (1968), 31.

[38]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, On the problem of bifurcation points,, (Russian), 2 (1968), 41.

[39]

P. P. Zabreĭko and P. Obradovich, On the theory of Banach spaces of vector-valued functions,, (Russian), 10 (1968), 12.

[40]

P. P. Zabreĭko and A. I. Povolotckiĭ, The eigenvectors of Hammerstein's operator,, (Russian), 183 (1968), 758.

[41]

P. P. Zabreĭko and B. P. Kac, On the Nekrasov-Nazarov method of solving nonlinear equations in the case of two-dimensional degeneracy,, (Russian), 3 (1968), 73.

[42]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, On the branching equations,, (Russian), 3 (1968), 80.

[43]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Asymptotic approximations of implicit functions,, (Russian), 3 (1968), 94.

[44]

P. P. Zabreĭko and I. B. Ledovskaya, Existence theorems for equations in Banach spaces and the averaging principle,, (Russian), 3 (1968), 122.

[45]

P. P. Zabreĭko, A theorem for semiadditive functionals,, (Russian), 3 (1969), 86.

[46]

P. P. Zabreĭko, Y. S. Kolesov and M. A. Krasnosel'skiĭ, Implicit functions and the averaging principle of N. N. Bogoljubov and N. M. Krylov,, (Russian), 184 (1969), 526.

[47]

P. P. Zabreĭko and I. B. Ledovskaya, On the basis of the method of N. N. Bogoljubov - N. M. Krylov for ordinary differential equations,, (Russian), 5 (1969), 240.

[48]

V. S. Burd, P. P. Zabreĭko, Ju. S. Kolesov and M. A. Krasnosel'skiĭ, The averaging principle and bufurcation of almost periodic solutions,, (Russian), 187 (1969), 1219.

[49]

P. P. Zabreĭko and A. V. Zafievskiĭ, A certain class of semigroups,, (Russian), 189 (1969), 934.

[50]

M. A. Krasnosel'skiĭ, B. M. Darinskiĭ, I. V. Emelin, P. P. Zabreĭko, E. A. Lifsic and A. V. Pokrovskiĭ, An operator-hysterant,, (Russian), 190 (1970), 34.

[51]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and E. A. Lifsic, An oscillator on an elasto-plastic element,, (Russian), 190 (1970), 266.

[52]

P. P. Zabreĭko and A. I. Povolockiĭ, On the theory of Hammerstein equations,, (Russian), 22 (1970), 150.

[53]

P. P. Zabreĭko and A. I. Povolockiĭ, Bifurcation points of Hammerstein's equation,, (Russian), 194 (1970), 496.

[54]

V. S. Burd, P. P. Zabreĭko, Ju. S. Kolesov and M. A. Krasnosel'skiĭ, Small combined oscillations and the averaging principle,, (Russian), (1969), 120.

[55]

P. P. Zabreĭko and S. O. Strygina, Cesari's equation and Galerkin's method for finding periodic solutions of ordinary differential equations,, (Ukrainian), 7 (1970), 583.

[56]

P. P. Zabreĭko, Schaefer's method in the theory of Hammerstein integral equations,, (Russian), 84 (1971), 456.

[57]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, The solvability of nonlinear operator equations,, (Russian), 5 (1971), 42.

[58]

P. P. Zabreĭko and A. I. Povolockiĭ, Remark on exaistence theorems for the solution of the Hammerstein equation,, (Russian), 404 (1971), 374.

[59]

P. P. Zabreĭko and A. I. Povolockiĭ, The eigenfunctions of the Hammerstein operator,, (Russian), 7 (1971), 1294.

[60]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and Ju. V. Pokornyĭ, A certain class of positive linear operators,, (Russian), 5 (1971), 9.

[61]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Iterations of operators and fixed points,, (Russian), 196 (1971), 1006.

[62]

P. P. Zabreĭko and B. P. Kac, The Nekrasov-Nazarov method of solving nonlinear operator equations,, Sibirsk. Mat. Z., 12 (1971), 1026.

[63]

P. P. Zabreĭko and A. I. Povolockiĭ, The bifurcation points of the Hammerstein equation,, (Russian), 6 (1971), 43.

[64]

P. P. Zabreĭko and Ju. I. Fetisov, The method of small parameter for hyperbolic equations,, (Russian), 8 (1972), 823.

[65]

P. P. Zabreĭko and A. I. Povolckiĭ, Quasilinear operators and the Hammerstein equations,, (Russian), 12 (1972), 453.

[66]

P. P. Zabreĭko and A. I. Povolockiĭ, Second solutions of Hammerstein equations,, (Russian), 2 (1973), 31.

[67]

P. P. Zabreĭko, n the theory of periodic vector fields,, (Russian), 2 (1973), 24.

[68]

P. P. Zabreĭko and N. Ja. Kruglyak, A proof of a theorem of M. Artin,, (Russian), 7 (1974), 134.

[69]

P. P. Zabreĭko and Ju. I. Fetisov, An application of Bogoljubov-Krylov averaging method to hyperbolic equations,, (Russian), 7 (1974), 150.

[70]

P. P. Zabreĭko, Semigroups and totally bounded sets,, (Russian), 8 (1974), 8.

[71]

P. P. Zabreĭko, Ideal spaces of functions,, (Russian), 8 (1974), 12.

[72]

P. P. Zabreĭko and M. A. Krasnosel'skiĭ, The rotation of vector fields with superpositions and iterations of operators,, (Russian), 12 (1974), 23.

[73]

P. P. Zabreĭko and N. V. Senchakova, Computation of the Poincaré index for plane vector fields,, (Russian), 12 (1974), 38.

[74]

P. P. Zabreĭko, The Cauchy problem for ordinary differential equations in Banach spaces,, (Russian), 11 (1975), 53.

[75]

P. P. Zabreĭko and Ju. V. Pokornyĭ, A special metric space related to a convex set,, (Russian), 1 (1976), 48.

[76]

P. P. Zabreĭko and E. I. Smirnov, On the closed graph theorem,, (Russian), 18 (1977), 306.

[77]

P. P. Zabreĭko, On the continuous dependence on a parameter of Green's operator of the bonded problem for a differential equation on the axis,, (Russian), 2 (1977), 137.

[78]

P. P. Zabreĭko and A. I. Povolockiĭ, The Hammerstein operator and Orlicz spaces,, (Russian), 2 (1977), 39.

[79]

P. P. Zabreĭko and S. V. Smickih, On the problem of calculating the index of a zero singular point of completely continuous vector fields with positive operator,, (Russian), 2 (1977), 52.

[80]

P. P. Zabreĭko and S. V. Smickih, A theorem of M. G. Krein and M. A. Rutman,, (Russian), 13 (1979), 81.

[81]

P. P. Zabreĭko and N. M. Isakov, Reduction principle for the method of successive approximations and invariant manifolds,, (Russian), 20 (1979), 539.

[82]

P. P. Zabreĭko and A. I. Smirnov, Solvability of the Cauchy problem for ordinary differential equations in Banach spaces,, (Russian), 15 (1979), 2085.

[83]

P. P. Zabreĭko and A. V. Zafievskiĭ, Conditions for the extremum of smooth functions,, (Russian), 4 (1979), 76.

[84]

P. P. Zabreĭko and I. N. Rjabikova, On the theory of higher order derivatives for operators in Banach spaces,, (Russian), 4 (1979), 87.

[85]

Yu. Appell and P. P. Zabreĭko, Condensing operators in the theory of implicit functions,, (Russian), 165 (1980), 3.

[86]

P. P. Zabreĭko and A. V. Zafievskiĭ, Conditions for a second order extremum,, (Russian), 166 (1980), 58.

[87]

P. P. Zabreĭko, On the homotopy theory of periodic vector fields,, (Russian), 162 (1980), 3.

[88]

P. P. Zabreĭko, On approximate solving the operator equations,, (Russian), (1980), 51.

[89]

P. P. Zabreĭko, On the theory of integral equations. I,, (Russian), 162 (1981), 53.

[90]

P. P. Zabreĭko, M. A. Krasnosel'skiĭ and A. I. Povolotskiĭ, Spiderwebs of eigenvectors of potential operators,, (Russian), 162 (1981), 62.

[91]

P. P. Zabreĭko and A. V. Zafievskiĭ, On general conditions for a minimum,, (Russian), 263 (1982), 798.

[92]

P. P. Zabreĭko and P. P. Zlepko, A generalization of the Newton-Kantorovich method on an equation with nondifferentiable operators,, (Russian) Ukrain. Mat. Z., 34 (1982), 365.

[93]

P. P. Zabreĭko, On the theory of integral operators. II,, (Russian), 169 (1982), 80.

[94]

P. P. Zabreĭko and V. P. Tikhonov, Determining equations and the relatedness principle,, (Russian), 24 (1983), 79.

[95]

Yu. Appell and P. P. Zabrejko, On a theorem of M. A. Krasnosel'skiĭ,, Nonlinear Analysis: Theory, 7 (1983), 695. doi: 10.1016/0362-546X(83)90026-3.

[96]

J. Appell and P. P. Zabreĭko, Sharp upper bounds for a superposition operator,, (Russian), 27 (1983), 686.

[97]

P. P. Zabreĭko and E. I. Smirnov, Principles of uniform boundedness,, (Russian), 35 (1984), 287.

[98]

P. P. Zabreĭko, On the theory of integral operators. III,, (Russian), 124 (1983), 8.

[99]

P. P. Zabreĭko and N. A. Evkhuta, Convergence of A. M. Samoĭlenko's method of successive approximations for finding periodic solutions,, (Russian), 29 (1985), 15.

[100]

N. A. Evkhuta and P. P. Zabreĭko, Samoĭlenko's method for finding periodic solutions of quasilinear differential equations in a Banach space,, (Russian), 37 (1985), 162.

[101]

P. P. Zabreĭko, The domain of convergence of the method of successive approximations for linear equations,, (Russian), 29 (1985), 201.

[102]

J. Appell and P. P. Zabreĭko, Analytic superposition operators,, (Russian), 29 (1985), 878.

[103]

J. Appell and P. P. Zabrejko, On analyticity conditions for the superposition operator in ideal Banach spaces,, Boll. Un. Mat. Ital. C (6), 4 (1985), 279.

[104]

F. Dedagich and P. P. Zabreĭko, On superposition operators in $l_p$ spaces,, (Russian), 28 (1987), 86.

[105]

P. P. Zabreĭko and Nguen Khong Tkhai, On the theory of Orlicz spaces of vector-functions,, (Russian), 31 (1987), 116.

[106]

P. P. Zabreĭko and Ya. V. Radyno, Applications of fixed-point theory to the Cauchy problem for equations with degrading operators,, (Russian), 23 (1987), 345.

[107]

P. P. Zabreĭko, Ideal spaces of vector functions,, (Russian), 31 (1987), 298.

[108]

P. P. Zabreĭko and D. F. Nguen, The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates,, Numer. Funct. Anal. Optim., 9 (1987), 671. doi: 10.1080/01630568708816254.

[109]

J. Appell and P. P. Zabrejko, On the degeneration of the class of differentiable superposition operators in function spaces,, Analysis, 7 (1987), 305.

[110]

U. U. Diallo and P. P. Zabreĭko, The Bogolyubov averaging principle in the problem of bounded solutions of Barbashin's integro-differential equations,, (Russian), (1987), 263.

[111]

P. P. Zabreĭko and T. A. Makarevich, A Generalization of the Banach - Caccioppoli principle to operators in pseudometric spaces,, (Russian), 23 (1987), 1497.

[112]

P. P. Zabreĭko and T. A. Makarevich, The fixed point theorem and a theorem of L.V. Ovsyannikov,, (Russian), 3 (1987), 53.

[113]

J. Appell, O. W. Diallo and P. P. Zabrejko, On linear integro-differential equations of Barbashin type in spaces of continuous and measurable functions,, J. of Integral Equations Appl., 1 (1988), 227. doi: 10.1216/JIE-1988-1-2-227.

[114]

J. Appell, I. Massabo, A. Vignoli and P. P. Zabrejko, Lipschitz and Darbo conditions for the superposition operator in ideal spaces,, Ann. Mat. Pura Appl., 152 (1988), 123. doi: 10.1007/BF01766144.

[115]

P. P. Zabreĭko and Nguen Khong Tkhaĭ, Linear integral operators in ideal spaces of vector functions,, (Russian), 32 (1988), 587.

[116]

P. P. Zabreĭko and Dyk Fien Nguyen, Pták's estimates in the Newton-Kantorovich method for operator equations,, (Russian), 3 (1989), 8.

[117]

P. P. Zabreĭko and B. A. Godunov, The nature of the convergence of successive approximations for equations with smooth operators,, (Russian), 33 (1989), 583.

[118]

P. P. Zabreĭko, Existence and uniqueness theorems for solutions of the Cauchy problem for differential equations with worsening operators,, (Russian), 33 (1989), 1068.

[119]

J. Appell and P. P. Zabrejko, Continuity properties of the superposition operator,, J. Austral. Math. Soc. Ser. A, 47 (1989), 186.

[120]

J. Appell and P. P.Zabrejko, Boundedness properties of the superposition operator,, Bulletin of the Polish Academy of Sciences. Mathematics, 37 (1989), 363.

[121]

J. Appell, Nguyen Hong Thai and P. P. Zabrejko, General existence theorems for quasilinear elliptic systems without monotonicity,, Journal of Mathematical Analysis and Applications, 145 (1990), 26. doi: 10.1016/0022-247X(90)90428-I.

[122]

U. U. Diallo and P. P. Zabreĭko, Conditions for the asymptotic stability of solutions of Barbashin integro-differential equations,, (Russian), 34 (1990), 101.

[123]

P. P. Zabreĭko, Asymptotic properties of the iterations of linear operators and their applications to approximate methods and to the theory of fixed points,, (Russian), 34 (1990), 485.

[124]

P. P. Zabreĭko and Nguen Khong Tkhai, Cones of vector-functions in Orlicz spaces of vector-functions. Normality and reproducibility properties,, (Russian), 3 (1990), 30.

[125]

P. P. Zabrejko and Nguen Khong Tkhai, Duality theory for ideal spaces of vector-valued functions,, (Russian), 311 (1990), 1296.

[126]

P. P. Zabrejko and Nguen Khong Tkhai, New theorems on the solvability of Hammerstein operator and integral equations,, (Russian), 312 (1990), 28.

[127]

P. P. Zabrejko and S. A. Tersian, On the variational method for solvability of nonlinear integral equations of Hammerstein type,, (Russian), 43 (1990), 9.

[128]

J. Appell and P. P. Zabrejko, Boundedness properties of the superposition operator,, Bulletin of the Polish Academy of Sciences. Mathematics, 37 (1989), 363.

[129]

P. P. Zabrejko, Error estimates for successive approximations and spectral properties of linear operators,, Numerical Functional Analysis and Applications, 11 (1990), 823. doi: 10.1080/01630569008816404.

[130]

P. P. Zabreĭko, The principle of contraction mappings in K-metric and locally convex spaces,, (Russian), 34 (1990), 1065.

[131]

S. A. Tersian and P. P. Zabrejko, Hammerstein integral equations with nontrivial solutions,, Results Math., 19 (1991), 179.

[132]

N. A. Evkhuta and P. P. Zabrejko, The Poincarè method and Samojlenko method for the construction of periodic solutions to ordinary differential equations,, Mathematische Nachrichten, 153 (1991), 85. doi: 10.1002/mana.19911530109.

[133]

J. Appell, E. De Pascale and P. P. Zabrejko, Multivalued superposition operators,, Rend. Sem. Mat. Univ. Padova, 86 (1991), 213.

[134]

P. P. Zabreĭko and Nguen Dyk Fien, Estimates for the rate of convergence of the Newton-Kantorovich method for equations with Hölder linearizations,, (Russian), 2 (1991), 8.

[135]

P. P. Zabrejko and Nguen Khong Tkhai, New results concerning the solvability of Hammerstein operational and integral equations,, (Russian), 27 (1991), 672.

[136]

P. P. Zabrejko and L. G. Tretyakov, Periodic solutions of a quasilinear telegraph equation,, (Russian), 27 (1991), 815.

[137]

J. Appell, E. De Pascale and P. P. Zabrejko, On the application of the Newton-Kantorovic method to nonlinear integral equations of Uryson type,, Numerical Functional Analysis and Optimization, 12 (1991), 271. doi: 10.1080/01630569108816428.

[138]

P. P. Zabreĭko and Nguen Khong Tkhaĭ, Some order properties in Orlicz spaces of vector functions,, (Russian), (1991), 32.

[139]

Nguyen Hong Thai and P. P. Zabrejko, The ideal spaces of vector functions and their applications,, Proceedings of II Conference on Function Spaces (Poznan), (1991), 112.

[140]

P. P. Zabrejko, Abstract relationship principles in the theory of operator equations,, Nonlinear Analysis: Theory, 16 (1991), 817. doi: 10.1016/0362-546X(91)90146-R.

[141]

P. P. Zabreĭko, $C$-theory of linear Fredholm integral equations of the second kind,, (Russian), 3 (1991), 38.

[142]

P. P. Zabreĭko, Implicit function theorems in the theory of nonlinear integral equations,, (Russian), 35 (1995), 975.

[143]

J. Appell, Nguen Hong Thai and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions. I,, Indag. Math., 2 (1991), 385. doi: 10.1016/0019-3577(91)90025-3.

[144]

J. Appell, Nguen Hong Thai and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions. II,, Indag. Math., 2 (1991), 397.

[145]

P. P. Zabreĭko, Iterative methods for solving operator equations and their applications to differential equations,, (Russian), (1991), 193.

[146]

J. Appell and P. P. Zabrejko, Linear differential equations in scales of Banach spaces,, Analysis, 12 (1992), 31.

[147]

P. P. Zabrejko and Nguen Van Min', The group of characteristic operators and its applications in the theory of linear ordinary differential equations,, (Russian), 324 (1992), 24.

[148]

P. P. Zabreĭko and Nguen Van Min', Exponential dichotomy and integral manifolds in the theory of flows and their applications,, (Russian), 324 (1992), 515.

[149]

J. Appell, Nguen Hong Thai and P. P. Zabrejko, Multivalued superposition operators in ideal spaces of vector functions. III,, Indag. Math., 3 (1992), 1. doi: 10.1016/0019-3577(92)90023-E.

[150]

P. P. Zabrejko, Iterations methods for the solution of operator equations and their application to ordinary and partial differential equations,, Rendiconti di Matematica. Ser. 7. Roma, 11 (1992), 381.

[151]

J. Appell, A. Carbone and P. P. Zabrejko, Kantorovic majorants for nonlinear operators and applications to Uryson integral equations,, Rendiconti di Matematica. Ser. 7. Roma, 12 (1992), 675.

[152]

J. Appell, O Jong Guk and P. P. Zabrejko, On the Weyl decomposition of the space $D_p^ (O)$ and otrhogonal projections of Navier-Stokes equations,, Annali Univ. Ferrara. Ser. 7: Sci. Mat., 38 (1992), 133.

[153]

P. P. Zabreĭko and Yu. V. Lysenko, A modified Newton-Kantorovich method for finding the minima of smooth functionals,, (Russian), 37 (1993), 106.

[154]

J. Appell, E. De Pascale and P. P. Zabrejko, On the application of the method of successive approximations and the Newton-Kantorovich method to nonlinear functional-integral equations,, Advances in Mathematical Sciences and Applications, 21 (1993), 25.

[155]

B. Aulbach, Nguyen Van Minh and P. P. Zabreiko, A generalization of the monodromy operator for non-periodic linear differential equations,, Differential Equations and Dynamical Systems, 1 (1993), 211.

[156]

N. T. Demidovich, P. P. Zabreĭko and Yu. V. Lysenko, A remark on the Newton-Kantorovich method for nonlinear equations with Hölder linearizations,, (Russian), 4 (1993), 22.

[157]

P. P. Zabreĭko and Yu. V Lysenko, Theorems on the approximation of continuous functions with values in Banach spaces,, (Russian), 4 (1993), 28.

[158]

J. Appell, A. Kufner, O Jong Guk and P. P. Zabrejko, Growth properties of Sobolev space functions over unbounded domains,, Annali Univ. Ferrara. Ser. 7 Sci. Mat., 39 (1993), 55.

[159]

A. B. Antonevich, J. Appell and P. P. Zabrejko, Some remarks on the asymptotic behaviour of iterations of linear operators,, Studia Math., 112 (1994), 1.

[160]

P. P. Zabrejko and T. V. Savchenko, The Banach - Caccioppoli principle and the implicit function theorem in a binormed space and its applications to differential equations,, Diff. Uravn., 30 (1994), 381.

[161]

J. Appell, A. S. Kalitvin and P. P. Zabrejko, Boundary value problems for integro-differential equations of Barbashin type,, Journal of Integral Equations and Applications, 6 (1994), 1. doi: 10.1216/jiea/1181075787.

[162]

J. Appell, E. De Pascale and P. P. Zabrejko, Some remarks on Banach limits,, Atti Sem. Mat. Fis. Univ. Modena, 42 (1994), 273.

[163]

A. K. Abdulazizov, E. De Pascale and P. P. Zabrejko, Il teorema di Bohl sulle soluzioni limitate: Sistemi di infinite equazioni differenziali ordinarie,, Rendiconti Istituto Lombardo, 128 (1994), 37.

[164]

A. Vignoli and P. P. Zabrejko, Some remarks on the Hildebrandt-Graves theorem,, Zeitschrift für Analysis und ihre Anwendungen, 14 (1995), 89.

[165]

E. A. Barkova and P. P. Zabreĭko, Roumieu spaces and the Cauchy problem for linear differential equations with unbounded operators,, (Russian), 39 (1995), 19.

[166]

P. P. Zabreĭko, Implicit functions and operators that are monotone in the sense of Minty in Banach-valued spaces,, (Russian), 39 (1995), 17.

[167]

P. P. Zabreĭko and E. V. Shpilenya, Theorems on the solvability of the Cauchy problem for abstract parabolic equations,, (Russian), 39 (1995), 13.

[168]

B. A. Godunov and P. P. Zabrejko, Geometric characteristics for convergence and asymptotics of successive approximations of equations with smooth operators,, Studia Mathematica, 116 (1995), 225.

[169]

P. P. Zabrejko and V. B. Moroz, New solvability theorems for Hammerstein integral equations with potential nonlinearities,, Differencial'nye Uravnenija, 31 (1995), 690.

[170]

P. P. Zabrejko, $L_2$-theory of Fredholm linear integral equations of the second kind,, Differencial'nye Uravnenija, 31 (1995), 1498.

[171]

J. Appell, E. De Pascale, A. S. Kalitvin and P. P. Zabrejko, On the application of the Newton- Kantorovich method to nonlinear partial integral equations,, Zeitschrift Anal. Anw., 15 (1996), 397.

[172]

V. B. Moroz and P. P. Zabrejko, A variant of the mountain pass theorem and its applications to Hammerstein integral equations,, Zeitschrift für Mathematik, 15 (1996), 985.

[173]

P. P. Zabrejko, The mean theorem for differential mappings in Banach spaces,, Integral Transforms and Special Functions, 4 (1996), 153. doi: 10.1080/10652469608819103.

[174]

J. Appell, E. De Pascale, Ju. V. Lysenko and Zabrejko, New results on Newton-Kantorovich approximations with applications to nonlinear integral equations,, Numerical Functional Analysis and Optimization, 18 (1997), 1. doi: 10.1080/01630569708816744.

[175]

A. Vignoli, P. P. Zabreĭko and V. B. Moroz, Critical values of lower-bounded functionals, and Hammerstein equations,, (Russian), 41 (1997), 16.

[176]

E. A. Barkova and P. P. Zabrejko, Linear differential equations with unbounded operators in Banach spaces,, Zeitschrift für Analysis und ihre Anwendungen, 17 (1998), 339.

[177]

E. De Pascale and P. P. Zabrejko, The convergence of the Newton-Kantorovich method under Vertgeim conditions: A new improvement,, Zeitschrift für Analysis und ihre Anwendungen, 17 (1998), 271.

[178]

V. V. Gorokhovik and P. P. Zabreĭko, Fréchet differentiability of multimappings,, (Russian), 1 (1998), 34.

[179]

P. P. Zabrejko, The fixed point theory and the Cauchy problem for partial differential equations,, (Russian), 1 (1998), 93.

[180]

P. P. Zabreĭko and A. P. Kovalenok, Computation of the index of a singular point of a pseudomonotone vector field. The case of Hilbert spaces,, (Russian), 1 (1998), 107.

[181]

S. V. Zhestkov and P. P. Zabreiko, The Banach-Caccioppoli and Kantorovich principles for the Cauchy problem in the theory of nonlinear systems with partial derivatives,, (Russian), 4 (2000), 48.

[182]

P. P., Zabreĭko and A. P. Kovalenok, On the computation of the asymptotic index of pseudo-monotone vector fields,, (Russian), 44 (2000), 11.

[183]

J. Appell, E. De Pascale and P. P. Zabreĭko, On the unique solvability of Hammerstein integral equations with non-symmetric kernels,, in, 40 (2000), 27.

[184]

F. Cianciaruso, E. De Pascale and P. P. Zabreiko, Some remarks on Newton-Kantorovič approximations,, Atti Sem. Mat. Fis. Univb. Modena, 48 (2000), 207.

[185]

E. De Pascale, P. P. Zabreĭko and N. I. Shirokanova, New conditions for the solvability of Lyapunov-Schmidt integral equations,, (Russian), 44 (2000), 14.

[186]

P. P. Zabrejko, Mark aleksandrovich krasnosel'skii - my teacher and friend,, Izv. Ross. Akad. Estestv. Nauk: Matem., 4 (2000), 5.

[187]

D. Caponetti, E. De Pascale and P. P. Zabreĭko, On the Newton-Kantorovič method in $K$-normed linear spaces,, Rendiconti del Circolo Matematico di Palermo, 49 (2000), 545. doi: 10.1007/BF02904265.

[188]

P. P. Zabreiko and Yu. V. Lysenko, Explicit formulas for higher derivatives of inverse functions in Banach spaces,, (Russian), 4 (2000), 40.

[189]

Z. Balanov, W. Krawcewicz, A. Kushkuley and P. P. Zabreĭko, On a local Lipschitz constant of the maps related to $LU$-decomposition,, Zeitschrift für Analysis und ihre Anwendungen, 19 (2000), 1947.

[190]

E. V. Frolova, A. S. Kalitvin and P. P. Zabrejko, Operator functions with partial integrals on $\mathcal C$ and $L_p$,, Journal of Electrotechnics and Mathematics, 6 (2001), 29.

[191]

P. P. Zabreĭko and Yu. V. Lysenko, Exact formulas for higher-order derivatives of inverse functions in Banach spaces,, (Russian), 45 (2001), 27.

[192]

P. P. Zabreĭko and A. P. Kovalenok, On the existence of nontrivial solutions for a class of elliptic problems,, (Russian), 45 (2001), 34.

[193]

P. P. Zabreĭko and A. P. Kovalenok, On the solvability and existence of nontrivial solutions of the two-dimensional Dirichlet problem,, (Russian), 45 (2001), 5.

[194]

S. V. Zhestkov and P. P. Zabreĭko, On a converse theorem to the fixed point principle in the theory of the Cauchy problem for linear normal partial differential systems,, (Russian), 45 (2001), 12.

[195]

P. P. Zabreiko and Yu. V. Lysenko, Explicit formulas of higher derivatives of implicit functions in Banach spaces,, (Russian), 8 (2001), 114.

[196]

P. P. Zabreiko, On the theory of focusing operators,, (Russian), 3 (2002), 5.

[197]

P. P. Zabreĭko and Yu. V. Lysenko, Explicit formulas for higher-order derivatives of implicit functions,, (Russian), 46 (2002), 8.

[198]

P. P. Zabreĭko, On the Poincaré index of essentially singular points of analytic functions,, (Russian), 46 (2002), 5.

[199]

P. P. Zabreĭko, A. S. Kalitvin and E.V. Frolova, On partial integral equations in the space of continuous functions,, (Russian), 38 (2002), 538. doi: 10.1023/A:1016371902018.

[200]

P. P. Zabreĭko, On global homeomorphism theorem for Gateaux differentiable maps,, (Russian), 1 (2002), 5.

[201]

D. Caponetti and P. P. Zabreĭko, Convex operators in ordered Banach spaces and applications to the Newton-Kantorovič method in $K$-normed linear spaces,, Atti Sem. Mat. Fis. Univ. Modena, 50 (2002), 259.

[202]

E. De Pascale and P. P. Zabreiko, The chord method in Banach spaces and some applications,, Nonlinear Functional Analysis and Applications, 7 (2002), 659.

[203]

E. A. Alekhno and P. P. Zabreĭko, Quasipositive elements and indecomposable operators in ideal spaces. I,, (Russian), 4 (2002), 5.

[204]

E. A. Alekhno and P. P. Zabreĭko, Quasipositive elements and indecomposable operators in ideal spaces. II,, (Russian), 1 (2003), 5.

[205]

P. P. Zabreiko, M.A. Krasnosel'skiĭ and his books. I,, (Russian), (2003), 82.

[206]

S. V. Zhestkov and P. P. Zabrejko, On the nonlocal solvability of the Cauchy problem for quasilinear normal first-order partial differential equations,, Differencial'nye Uravnenya, 39 (2003), 1001. doi: 10.1023/B:DIEQ.0000009203.74756.fd.

[207]

P. P. Zabreĭko and T. V. Tarasik, The Banach-Caccioppoli principle for operators in $K$-normal linear spaces, and stochastic differential equations,, (Russian), 48 (2004), 41.

[208]

E. De Pascale and P.P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions,, Fixed Point Theory, 5 (2004), 117.

[209]

E. A. Barkova and P. P. Zabrejko, An analog of the Peano theorem for fractional-order quasilinear equations in compactly embedding scales of Bansach spaces,, Differencial'nye Uravnenya, 40 (2004), 522. doi: 10.1023/B:DIEQ.0000035793.44173.88.

[210]

P. P. Zabreĭko and O. N. Kirsanova-Evkhuta, A new theorem on the convergence of the minimal residual method,, (Russian), 2 (), 5.

[211]

E. A. Alekhno and P. P. Zabreiko, Weak continuity of superposition operator in ideal spaces with continuous measure,, (Russian), 2 (2004), 21.

[212]

P. P. Zabrejko and N. I. Shirokanova, New existence theorems for Lyapunov-Schmidt integral equations,, Differencial'nye Uravnenya, 40 (2004), 1198. doi: 10.1007/s10625-005-0005-9.

[213]

S. V. Zhestkov and P. P. Zabreĭko, On the construction of invariant Banach spaces and the nonlocal solvability of the Cauchy problem,, (Russian), 3 (2004), 112.

[214]

P. P. Zabreĭko O. N. Kirsanova-Evkhuta, The minimal residual method in Banach spaces,, (Russian), 49 (2005), 5.

[215]

E. A. Alekhno and P. P. Zabreĭko, On the weak continuity of the superposition operator in the space $L_\infty$,, (Russian), 2 (2005), 17.

[216]

P. P. Zabreĭko and A. S. Tykun, The Conley index and the method of guiding functions in the theory of bounded solutions of differential equations,, (Russian), 3 (2005), 13.

[217]

V. V. Gorokhovik and P. P. Zabreiko, On Fréchet differentiability of multifunction,, Optimization, 54 (2005), 391. doi: 10.1080/02331930500100148.

[218]

O. N. Evkhuta and P. P. Zabreĭko, New convergence theorems for Krasnosel'skiĭ-Rutitskiĭ approximations for operator equations in Banach spaces,, (Russian), 49 (2005), 17.

[219]

S. V. Zhestkov and P. P. Zabreĭko, A constructive version of the Meyers theorem for analytic ordinary differential equations,, (Russian), 5 (2005), 11.

[220]

S. V. Zhestkov and P. P. Zabreĭko, The majorant method and the fixed point principle in the nonlocal theory of the Cauchy problem for normal partial differential systems,, (Russian), 42 (2006), 233. doi: 10.1134/S001226610602011X.

[221]

P. P. Zabreĭko and O. Yu. Kushel, The Gantmakher-Kreĭn theorem for binonnegative operators in spaces of functions,, (Russian), 50 (2006), 9.

[222]

P. P. Zabreiko, Some elementary fixed point principle,, in, (2006), 255.

[223]

E. A. Barkova and P. P. Zabreĭko, The Cauchy problem for differential equations of fractional order with deteriorating right-hand sides,, (Russian), 42 (2006), 1132. doi: 10.1134/S0012266106080143.

[224]

S. V. Zhestkov and P. P. Zabreĭko, Nonlocal solvability of the Cauchy problem for a matrix system of ordinary differential equations of Abel-Bernoulli type and the Meyers theorem,, (Russian), 4 (2006), 33.

[225]

S. V. Zhestkov and P. P. Zabreiko, To a problem of nonlocal solvability of the Cauchy problem for Fedorov-Bernouli matrix system with partial derivatives,, (Russian), 14 (2006), 48.

[226]

A. V. Guminskaya and P. P. Zabreĭko, On the calculation of the relative index of a singular point in the nondegenerate case,, (Russian), 1 (2007), 4.

[227]

P. P. Zabreiko, "Applied Equivariant Degree. With a Preface in the Book: Z. Balanov, W. Krawcewicz and H. Steinlein,", (Differential Equations & Dynamical Systems), (2006).

[228]

P. P. Zabreĭko and A. V. Krivko-Krasko, General conditions for a local minimum of smooth functions of two variables,, (Russian), 51 (2007), 11.

[229]

P. P. Zabreĭko and A. V. Krivko-Krasko, Conditions for the local minimum of functions of two variables and the Newton diagram,, (Russian), 51 (2007), 30.

[230]

P. P. Zabreĭko, The open Leontief-Ford model,, Tr. Inst. Mat. (Minsk), 15 (2007), 15.

[231]

P. P. Zabreĭko, On a theorem of M. A. Krasnosel'skiĭ,, (Russian), 52 (2008), 15.

[232]

O. N. Evkhuta and P. P. Zabreiko, A class of iterative methods for solving nonlinear operator equations,, , (2008), 1.

[233]

A. P. Kovalenok and P. P. Zabreiko, The Skrypnik degree theory and boundary value problems,, in, (2008), 181.

[234]

P. P. Zabreĭko and O. Yu. Kushel, Gantmacher - Krein theorem .for bi-nonnegative operators in ideal spaces,, (Russian), 17 (2009), 1.

[235]

P. P. Zabreĭko and O. Yu. Kushel, On a class of linear operators in ideal spaces,, (Russian), (2009), 53.

[236]

P. P. Zabreĭko and Yu. V. Korots, Analysis of implicit successive approximations,, (Russian), 53 (2009), 33.

[237]

P. P. Zabreĭko and A. V. Krivko-Krasko, Systems of scalar equations and implicit functions. I,, Tr. Inst. Mat. (Minsk), 17 (2009), 3.

[238]

E. A. Barkova and P. P. Zabreĭko, Nonlocal theorems on the Cauchy problem for fractional-order differential equations,, (Russian), 54 (2010), 8.

[239]

P. P. Zabreĭko and A. V. Krivko-Krasko, Systems of scalar equations and implicit functions. II,, Tr. Inst. Mat. (Minsk), 18 (2010), 36.

[240]

O. Yu. Kushel and P. P. Zabreiko, Gantmacher - Kreĭn theorem for $2$-totally nonnegative operators in ideal spaces,, Operator Theory: Advances and Applications, 202 (2010), 395. doi: 10.1007/978-3-0346-0158-0_22.

[1]

Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-53. doi: 10.3934/dcdsb.2019155

[2]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[3]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[4]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[5]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[6]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[7]

Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193

[8]

Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237

[9]

Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240

[10]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[11]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[12]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[13]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[14]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[15]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[16]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[17]

Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377

[18]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[19]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[20]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

[Back to Top]