April  2013, 6(4): 999-1016. doi: 10.3934/dcdss.2013.6.999

Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences

2. 

19 Bol.Karetny Lane, Moscow GSP-4, 127994, Russia; National Research University Higher School of Economics

3. 

20 Myasnitskaya Street, Moscow 101000

Received  April 2011 Revised  February 2012 Published  December 2012

Autonomous higher order differential equations with scalarnonlinearities, periodic with respect to the main phasevariable under appropriate generic conditions, have an infinitesequence of isolated cycles with amplitudes growing to infinityand periods converging to some specific value $T_{0}$.
Citation: Alexander M. Krasnoselskii. Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 999-1016. doi: 10.3934/dcdss.2013.6.999
References:
[1]

C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975).   Google Scholar

[2]

A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995).   Google Scholar

[3]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).   Google Scholar

[4]

A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117.   Google Scholar

[5]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.   Google Scholar

[6]

A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445.  doi: 10.1016/S0895-7177(00)00216-8.  Google Scholar

[7]

A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660.  doi: 10.1134/S1064562408050049.  Google Scholar

[8]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).  doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9]

F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974).   Google Scholar

show all references

References:
[1]

C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975).   Google Scholar

[2]

A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995).   Google Scholar

[3]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).   Google Scholar

[4]

A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117.   Google Scholar

[5]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.   Google Scholar

[6]

A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445.  doi: 10.1016/S0895-7177(00)00216-8.  Google Scholar

[7]

A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660.  doi: 10.1134/S1064562408050049.  Google Scholar

[8]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).  doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9]

F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974).   Google Scholar

[1]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[2]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[15]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]