2014, 7(6): 1165-1179. doi: 10.3934/dcdss.2014.7.1165

Connections of zero curvature and applications to nonlinear partial differential equations

1. 

Department of Mathematics, University of Texas, Edinburg, TX, 78540, United States

Received  January 2013 Revised  September 2013 Published  June 2014

A general formulation of zero curvature connections in a principle bundle is presented and some applications are discussed. It is proved that a related connection based on a prolongation in an associated bundle remains zero curvature as well. It is also shown that the connection coefficients can be defined so that the partial differential equation to be studied appears as the curvature term in the structure equations. It is discussed how Lax pairs and Bäcklund tranformations can be formulated for such equations that occur as zero curvature terms.
Citation: Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165
References:
[1]

M. J. Ablowitz, D. K. Kaup, A. C. Newell and H. Segur, Nonlinear evolution equations of physical significance,, Phys. Rev. Letts., 31 (1973), 125. doi: 10.1103/PhysRevLett.31.125.

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,, Studies in Applied Mathematics, (1981).

[3]

I. M. Anderson and M. E. Fels, Symmetry reduction of exterior differential systems and Bäcklund transformations for PDE in the plane,, Acta Appl. Math., 120 (2012), 29. doi: 10.1007/s10440-012-9716-0.

[4]

P. Bracken, A geometric interpretation of prolongation by means of connections,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3504172.

[5]

P. Bracken, Exterior differential systems prolongations and applications to a study of two nonlinear partial differential equations,, Acta Appl. Math., 113 (2011), 247. doi: 10.1007/s10440-010-9597-z.

[6]

P. Bracken, Integrable systems of partial differential systems determined by structure equations and lax pair,, Phys. Letts. A, 374 (2010), 501. doi: 10.1016/j.physleta.2009.11.042.

[7]

P. Bracken, Connections defining representations of zero curvature and their lax and Bäcklund mappings,, J. of Geometry and Physics, 70 (2013), 157. doi: 10.1016/j.geomphys.2013.03.024.

[8]

R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A. Griffiths, Exterior Differential Systems,, Springer-Verlag, (1991). doi: 10.1007/978-1-4613-9714-4.

[9]

S. S. Chern and K. Tenenblat, Pseudospherical Surfaces and Evolution Equations,, Studies in Applied Mathematics, 74 (1986), 55.

[10]

F. B. Estabrook and H. D. Wahlquist, Prolongation structures of nonlinear evolution equations II,, J. Math. Phys., 17 (1976), 1293. doi: 10.1063/1.523056.

[11]

F. B. Estabrook, Moving frames and prolongation algebras,, J. Math. Phys., 23 (1982), 2071. doi: 10.1063/1.525248.

[12]

F. B. Estabrook, Bäcklund Transformations the Inverse Scattering Method, Solitons and Their Applications,, Lecture Notes in Mathematics, (1976), 12.

[13]

F. B. Estabrook and H. D. Wahlquist, Classical geometries defined by exterior differential systems on higher frame bundles,, Classical and Quantum Gravity, 6 (1989), 263. doi: 10.1088/0264-9381/6/3/008.

[14]

E. van Groesen and E. M. Jager, Mathematical Structures in Continuous Dynamical Systems,, Studies in Math. Physics, (1994).

[15]

R. Hermann, Pseudodifferentials of Estabrook and Wahlquist, the geometry of solutions and the theory of connections,, Phys. Rev. Letts., 36 (1976), 835. doi: 10.1103/PhysRevLett.36.835.

[16]

R. Hermann, The Geometry of Nonlinear Differential Equations, Bäcklund Transformations and Solitons,, Vol. XII, (1976).

[17]

J. Krasilshchik and A. Verbovetsky, Geometry of jet spaces and integrable systems,, J. Geom. and Physics, 61 (2011), 1633. doi: 10.1016/j.geomphys.2010.10.012.

[18]

P. W. Michor, Topics in Differential Geometry,, Graduate Studies in Mathematics, (2008).

[19]

E. G. Reyes, Pseudo-spherical surfaces and integrability of evolution equations,, Russian J. of Diff. Equations, 147 (1998), 195. doi: 10.1006/jdeq.1998.3430.

[20]

C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511606359.

[21]

A. K. Rybnikov, Connections defining representations of zero curvature and the solitons of sine-Gordon and Korteweg-de Vries equations,, Russian J. of Math. Phys., 18 (2011), 195. doi: 10.1134/S1061920811020087.

[22]

A. K. Rybnikov, Equations of the inverse problem, Bäcklund transformations and the theory of connections,, J. of Math Sciences, 94 (1999), 1685. doi: 10.1007/BF02365073.

[23]

H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations,, Journal of Math. Phys., 16 (1975), 1. doi: 10.1063/1.522396.

show all references

References:
[1]

M. J. Ablowitz, D. K. Kaup, A. C. Newell and H. Segur, Nonlinear evolution equations of physical significance,, Phys. Rev. Letts., 31 (1973), 125. doi: 10.1103/PhysRevLett.31.125.

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,, Studies in Applied Mathematics, (1981).

[3]

I. M. Anderson and M. E. Fels, Symmetry reduction of exterior differential systems and Bäcklund transformations for PDE in the plane,, Acta Appl. Math., 120 (2012), 29. doi: 10.1007/s10440-012-9716-0.

[4]

P. Bracken, A geometric interpretation of prolongation by means of connections,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3504172.

[5]

P. Bracken, Exterior differential systems prolongations and applications to a study of two nonlinear partial differential equations,, Acta Appl. Math., 113 (2011), 247. doi: 10.1007/s10440-010-9597-z.

[6]

P. Bracken, Integrable systems of partial differential systems determined by structure equations and lax pair,, Phys. Letts. A, 374 (2010), 501. doi: 10.1016/j.physleta.2009.11.042.

[7]

P. Bracken, Connections defining representations of zero curvature and their lax and Bäcklund mappings,, J. of Geometry and Physics, 70 (2013), 157. doi: 10.1016/j.geomphys.2013.03.024.

[8]

R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A. Griffiths, Exterior Differential Systems,, Springer-Verlag, (1991). doi: 10.1007/978-1-4613-9714-4.

[9]

S. S. Chern and K. Tenenblat, Pseudospherical Surfaces and Evolution Equations,, Studies in Applied Mathematics, 74 (1986), 55.

[10]

F. B. Estabrook and H. D. Wahlquist, Prolongation structures of nonlinear evolution equations II,, J. Math. Phys., 17 (1976), 1293. doi: 10.1063/1.523056.

[11]

F. B. Estabrook, Moving frames and prolongation algebras,, J. Math. Phys., 23 (1982), 2071. doi: 10.1063/1.525248.

[12]

F. B. Estabrook, Bäcklund Transformations the Inverse Scattering Method, Solitons and Their Applications,, Lecture Notes in Mathematics, (1976), 12.

[13]

F. B. Estabrook and H. D. Wahlquist, Classical geometries defined by exterior differential systems on higher frame bundles,, Classical and Quantum Gravity, 6 (1989), 263. doi: 10.1088/0264-9381/6/3/008.

[14]

E. van Groesen and E. M. Jager, Mathematical Structures in Continuous Dynamical Systems,, Studies in Math. Physics, (1994).

[15]

R. Hermann, Pseudodifferentials of Estabrook and Wahlquist, the geometry of solutions and the theory of connections,, Phys. Rev. Letts., 36 (1976), 835. doi: 10.1103/PhysRevLett.36.835.

[16]

R. Hermann, The Geometry of Nonlinear Differential Equations, Bäcklund Transformations and Solitons,, Vol. XII, (1976).

[17]

J. Krasilshchik and A. Verbovetsky, Geometry of jet spaces and integrable systems,, J. Geom. and Physics, 61 (2011), 1633. doi: 10.1016/j.geomphys.2010.10.012.

[18]

P. W. Michor, Topics in Differential Geometry,, Graduate Studies in Mathematics, (2008).

[19]

E. G. Reyes, Pseudo-spherical surfaces and integrability of evolution equations,, Russian J. of Diff. Equations, 147 (1998), 195. doi: 10.1006/jdeq.1998.3430.

[20]

C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511606359.

[21]

A. K. Rybnikov, Connections defining representations of zero curvature and the solitons of sine-Gordon and Korteweg-de Vries equations,, Russian J. of Math. Phys., 18 (2011), 195. doi: 10.1134/S1061920811020087.

[22]

A. K. Rybnikov, Equations of the inverse problem, Bäcklund transformations and the theory of connections,, J. of Math Sciences, 94 (1999), 1685. doi: 10.1007/BF02365073.

[23]

H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations,, Journal of Math. Phys., 16 (1975), 1. doi: 10.1063/1.522396.

[1]

Sara Cuenda, Niurka R. Quintero, Angel Sánchez. Sine-Gordon wobbles through Bäcklund transformations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1047-1056. doi: 10.3934/dcdss.2011.4.1047

[2]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[3]

Svetlana Katok, Ilie Ugarcovici. Structure of attractors for $(a,b)$-continued fraction transformations. Journal of Modern Dynamics, 2010, 4 (4) : 637-691. doi: 10.3934/jmd.2010.4.637

[4]

Harsh Pittie and Arun Ram. A Pieri-Chevalley formula in the K-theory of aG/B-bundle. Electronic Research Announcements, 1999, 5: 102-107.

[5]

Pavel I. Etingof. Galois groups and connection matrices of q-difference equations. Electronic Research Announcements, 1995, 1: 1-9.

[6]

Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203

[7]

Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

[8]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[9]

Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155

[10]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

[11]

Roderick S. C. Wong, H. Y. Zhang. On the connection formulas of the third Painlevé transcendent. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 541-560. doi: 10.3934/dcds.2009.23.541

[12]

Renato Iturriaga, Héctor Sánchez Morgado. The Lax-Oleinik semigroup on graphs. Networks & Heterogeneous Media, 2017, 12 (4) : 643-662. doi: 10.3934/nhm.2017026

[13]

Indranil Biswas, Georg Schumacher, Lin Weng. Deligne pairing and determinant bundle. Electronic Research Announcements, 2011, 18: 91-96. doi: 10.3934/era.2011.18.91

[14]

Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87

[15]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[16]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[17]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

[18]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

[19]

Federica Dragoni. Metric Hopf-Lax formula with semicontinuous data. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 713-729. doi: 10.3934/dcds.2007.17.713

[20]

Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]