December  2014, 7(6): 1321-1334. doi: 10.3934/dcdss.2014.7.1321

Control via decoupling of a class of second order linear hybrid systems

1. 

Department of Mathematics, 460 McBryde Hall, Virginia Tech, Blacksburg, VA 24060

Received  April 2013 Revised  November 2013 Published  June 2014

We study a terminal state control (reachability) problem for certain elastic systems of ``hybrid" type consisting of a single space dimension distributed parameter part coupled, at one endpoint of the relevant spatial, $x$, interval, to a lumped mass component. Two such systems are studied in detail. The first is a vibrating string system fixed at $x = 0$ and attached to a point mass at the right hand endpoint $x = L$. The second example concerns an Euler - Bernoulli beam system ``clamped" at $x = 0$ and attached, at $x = L$, to a mass with both translational and rotational inertia. In both cases the controls act on the mass, which is modeled by a finite dimensional system of differential equations. Analysis of the reachability problem is facilitated by a preliminary ``feedback type" transformation of the control variable which decouples the point mass from the distributed system. In both examples a concluding analysis is required to show that the component of the control generated by feedback lies in the same space as the originally applied control.
Citation: David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321
References:
[1]

M. D. Aouragh and N. Yebari, Riesz basis approach and exponential stabilization of a nonhomogeneous flexible beam with a tip mass,, Int. J. Math. & Stat., 7 (2010), 46. Google Scholar

[2]

S. Avdonin and S. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995). Google Scholar

[3]

M. S. Azam, N. Singh, A. Iyer and Y. P. Kakad, Detumbling and reorientation maneuvers and stabilization of NASA SCOLE system,, IEEE Trans. Aerosp. & Electr. Syst., 28 (1992), 80. doi: 10.1109/7.135434. Google Scholar

[4]

C. Baiocchi, V. Komornik and P. Loreti, Théorèmes du type Ingham et application à la théorie du contrôle,, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 453. doi: 10.1016/S0764-4442(97)89791-1. Google Scholar

[5]

W. E. Boyce and G. H. Handelman, Vibrations of rotating beams with tip mass,, Angew. Math. & Phys., 12 (1961), 369. doi: 10.1007/BF01600687. Google Scholar

[6]

F. Conrad and Ö. Morgül, On the stabilization of a flexible beam with a tip mass,, SIAM J. Control. & Opt., 36 (1998), 1962. doi: 10.1137/S0363012996302366. Google Scholar

[7]

M. Grobbelaar-Van Dalsen, Uniform stability for the Timoshenko beam with tip load,, J. Math. Anal. & and Appl., 361 (2010), 392. doi: 10.1016/j.jmaa.2009.06.059. Google Scholar

[8]

B.-Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass,, SIAM J. Control. & Opt., 39 (2001), 1736. doi: 10.1137/S0363012999354880. Google Scholar

[9]

J. Humar and M. Ruban, Dynamics of Structures,, CRC Press, (2002). Google Scholar

[10]

A. E. Ingham, Some trigonometric inequalities in the theory of series,, Mathem. Zeitschrift, 41 (1936), 367. doi: 10.1007/BF01180426. Google Scholar

[11]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Mat. Pura & Appl., 152 (1988), 281. doi: 10.1007/BF01766154. Google Scholar

[12]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Arch. Rat. Mech. & Anal., 103 (1988), 193. doi: 10.1007/BF00251758. Google Scholar

[13]

Ö. Morgül, B. P. Rao and F. Conrad, On the stabilization of a cable with a tip mass,, IEEE Trans. Automat. Control, 39 (1994), 2140. doi: 10.1109/9.328811. Google Scholar

[14]

B. P. Rao, Uniform stabilization of a hybrid system of elasticity,, SIAM J. Control. & Opt., 33 (1995), 440. doi: 10.1137/S0363012992239879. Google Scholar

[15]

D. L. Russell, Nonharmonic Fourier Series in the Control Theory of Distributed Parameter Systems,, J. Math. Anal. & Appl., 18 (1967), 542. doi: 10.1016/0022-247X(67)90045-5. Google Scholar

[16]

N. Yebari and M. D. Aouragh, Uniform stabilization of a hybrid system of elasticity with variable coefficients,, Int. J. Tomogr. & Stat., 10 (2008), 125. Google Scholar

show all references

References:
[1]

M. D. Aouragh and N. Yebari, Riesz basis approach and exponential stabilization of a nonhomogeneous flexible beam with a tip mass,, Int. J. Math. & Stat., 7 (2010), 46. Google Scholar

[2]

S. Avdonin and S. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995). Google Scholar

[3]

M. S. Azam, N. Singh, A. Iyer and Y. P. Kakad, Detumbling and reorientation maneuvers and stabilization of NASA SCOLE system,, IEEE Trans. Aerosp. & Electr. Syst., 28 (1992), 80. doi: 10.1109/7.135434. Google Scholar

[4]

C. Baiocchi, V. Komornik and P. Loreti, Théorèmes du type Ingham et application à la théorie du contrôle,, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 453. doi: 10.1016/S0764-4442(97)89791-1. Google Scholar

[5]

W. E. Boyce and G. H. Handelman, Vibrations of rotating beams with tip mass,, Angew. Math. & Phys., 12 (1961), 369. doi: 10.1007/BF01600687. Google Scholar

[6]

F. Conrad and Ö. Morgül, On the stabilization of a flexible beam with a tip mass,, SIAM J. Control. & Opt., 36 (1998), 1962. doi: 10.1137/S0363012996302366. Google Scholar

[7]

M. Grobbelaar-Van Dalsen, Uniform stability for the Timoshenko beam with tip load,, J. Math. Anal. & and Appl., 361 (2010), 392. doi: 10.1016/j.jmaa.2009.06.059. Google Scholar

[8]

B.-Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass,, SIAM J. Control. & Opt., 39 (2001), 1736. doi: 10.1137/S0363012999354880. Google Scholar

[9]

J. Humar and M. Ruban, Dynamics of Structures,, CRC Press, (2002). Google Scholar

[10]

A. E. Ingham, Some trigonometric inequalities in the theory of series,, Mathem. Zeitschrift, 41 (1936), 367. doi: 10.1007/BF01180426. Google Scholar

[11]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,, Ann. Mat. Pura & Appl., 152 (1988), 281. doi: 10.1007/BF01766154. Google Scholar

[12]

W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity,, Arch. Rat. Mech. & Anal., 103 (1988), 193. doi: 10.1007/BF00251758. Google Scholar

[13]

Ö. Morgül, B. P. Rao and F. Conrad, On the stabilization of a cable with a tip mass,, IEEE Trans. Automat. Control, 39 (1994), 2140. doi: 10.1109/9.328811. Google Scholar

[14]

B. P. Rao, Uniform stabilization of a hybrid system of elasticity,, SIAM J. Control. & Opt., 33 (1995), 440. doi: 10.1137/S0363012992239879. Google Scholar

[15]

D. L. Russell, Nonharmonic Fourier Series in the Control Theory of Distributed Parameter Systems,, J. Math. Anal. & Appl., 18 (1967), 542. doi: 10.1016/0022-247X(67)90045-5. Google Scholar

[16]

N. Yebari and M. D. Aouragh, Uniform stabilization of a hybrid system of elasticity with variable coefficients,, Int. J. Tomogr. & Stat., 10 (2008), 125. Google Scholar

[1]

Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239

[2]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[3]

Fatiha Alabau-Boussouira, Piermarco Cannarsa, Roberto Guglielmi. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Mathematical Control & Related Fields, 2011, 1 (4) : 413-436. doi: 10.3934/mcrf.2011.1.413

[4]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[5]

Kokum R. De Silva, Tuoc V. Phan, Suzanne Lenhart. Advection control in parabolic PDE systems for competitive populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1049-1072. doi: 10.3934/dcdsb.2017052

[6]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[7]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control & Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[8]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[9]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[10]

David L. Russell. Modeling and control of hybrid beam systems with rotating tip component. Evolution Equations & Control Theory, 2014, 3 (2) : 305-329. doi: 10.3934/eect.2014.3.305

[11]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[12]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[13]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

[14]

Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483

[15]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019028

[16]

Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5011-5019. doi: 10.3934/dcds.2018219

[17]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[18]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[19]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[20]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]