2014, 7(3): 395-409. doi: 10.3934/dcdss.2014.7.395

Pattern formation in 2D traffic flows

1. 

Laboratoire de Physique Théorique, bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France

Received  May 2013 Revised  September 2013 Published  January 2014

We review numerical and analytical results that have been obtained for a general model of intersecting flows of two types of particles propagating towards east ($\varepsilon $) and north ($\mathcal{N} $) on a bidimensional $M \times M$ square lattice. The behaviour of this model can also be reproduced by a system of mean field equations. The low density behaviour of both models is studied, with a focus on pattern formation. Using periodic boundary conditions, particles self-organize into a pattern of alternating diagonal stripes, which corresponds to an instability in the mean-field equations. With open boundary conditions, translational symmetry is broken. One then observes an asymmetry between the organization of the two types of particles, leading to tilted diagonals whose angle of inclination differs from $45^\circ$, both for the particle system and the equations. The angle of inclination of the stripes is measured using two different numerical methods. Finally, simplified theoretical arguments based on a particular mode of propagation give a quantitative estimate for the angle of the stripes. A complementary understanding of the phenomenon in terms of effective interactions between particles is presented.
Citation: Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395
References:
[1]

C. Appert-Rolland, J. Cividini and H. J. Hilhorst, Frozen shuffle update for an asymmetric exclusion process with open boundary conditions,, J. Stat. Mech., (2011).

[2]

O. Biham, A. A. Middleton and D. Levine, Self-organization and a dynamic transition in traffic-flow models,, Phys. Rev. A, 46 (1992). doi: 10.1103/PhysRevA.46.R6124.

[3]

D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic and some related systems,, Phys. Rep., 329 (2000), 199. doi: 10.1016/S0370-1573(99)00117-9.

[4]

J. Cividini and C. Appert-Rolland, Wake-mediated interaction between driven particles crossing a perpendicular flow,, J. Stat. Mech., 2013 (2013). doi: 10.1088/1742-5468/2013/07/P07015.

[5]

J. Cividini, C. Appert-Rolland and H. J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows,, Europhys. Lett., 102 (2013). doi: 10.1209/0295-5075/102/20002.

[6]

J. Cividini, H. J. Hilhorst and C. Appert-Rolland, Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect,, J. Phys. A: Math. Theor., 46 (2013).

[7]

Z.-J. Ding, R. Jiang and B.-H. Wang, Traffic flow in the Biham-Middleton-Levine model with random update rule,, Phys. Rev. E, 83 (2011). doi: 10.1103/PhysRevE.83.047101.

[8]

R. M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.066112.

[9]

H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for crossing pedestrian traffic flows,, J. Stat. Mech., 2012 (2012). doi: 10.1088/1742-5468/2012/06/P06009.

[10]

J. M. Molera, F. C. Martinez, J. A. Cuesta and R. Britot, Theoretical approach to two-dimensional trafIic flow models,, Phys. Rev. E, 51 (1995), 175. doi: 10.1103/PhysRevE.51.175.

[11]

N. H. Packard and S. Wolfram, Two-dimensional cellular automata,, J. Stat. Phys., 38 (1985), 901. doi: 10.1007/BF01010423.

[12]

S.-I. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundaries,, Phys. Rev. E, 54 (1996), 2409. doi: 10.1103/PhysRevE.54.2409.

[13]

S. Wolfram, Statistical mechanics of cellular automata,, Rev. Mod. Phys., 55 (1983), 601. doi: 10.1103/RevModPhys.55.601.

show all references

References:
[1]

C. Appert-Rolland, J. Cividini and H. J. Hilhorst, Frozen shuffle update for an asymmetric exclusion process with open boundary conditions,, J. Stat. Mech., (2011).

[2]

O. Biham, A. A. Middleton and D. Levine, Self-organization and a dynamic transition in traffic-flow models,, Phys. Rev. A, 46 (1992). doi: 10.1103/PhysRevA.46.R6124.

[3]

D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic and some related systems,, Phys. Rep., 329 (2000), 199. doi: 10.1016/S0370-1573(99)00117-9.

[4]

J. Cividini and C. Appert-Rolland, Wake-mediated interaction between driven particles crossing a perpendicular flow,, J. Stat. Mech., 2013 (2013). doi: 10.1088/1742-5468/2013/07/P07015.

[5]

J. Cividini, C. Appert-Rolland and H. J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows,, Europhys. Lett., 102 (2013). doi: 10.1209/0295-5075/102/20002.

[6]

J. Cividini, H. J. Hilhorst and C. Appert-Rolland, Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect,, J. Phys. A: Math. Theor., 46 (2013).

[7]

Z.-J. Ding, R. Jiang and B.-H. Wang, Traffic flow in the Biham-Middleton-Levine model with random update rule,, Phys. Rev. E, 83 (2011). doi: 10.1103/PhysRevE.83.047101.

[8]

R. M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.066112.

[9]

H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for crossing pedestrian traffic flows,, J. Stat. Mech., 2012 (2012). doi: 10.1088/1742-5468/2012/06/P06009.

[10]

J. M. Molera, F. C. Martinez, J. A. Cuesta and R. Britot, Theoretical approach to two-dimensional trafIic flow models,, Phys. Rev. E, 51 (1995), 175. doi: 10.1103/PhysRevE.51.175.

[11]

N. H. Packard and S. Wolfram, Two-dimensional cellular automata,, J. Stat. Phys., 38 (1985), 901. doi: 10.1007/BF01010423.

[12]

S.-I. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundaries,, Phys. Rev. E, 54 (1996), 2409. doi: 10.1103/PhysRevE.54.2409.

[13]

S. Wolfram, Statistical mechanics of cellular automata,, Rev. Mod. Phys., 55 (1983), 601. doi: 10.1103/RevModPhys.55.601.

[1]

Pierre Degond, Angelika Manhart, Hui Yu. A continuum model for nematic alignment of self-propelled particles. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1295-1327. doi: 10.3934/dcdsb.2017063

[2]

José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic & Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363

[3]

Alethea B. T. Barbaro, Pierre Degond. Phase transition and diffusion among socially interacting self-propelled agents. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1249-1278. doi: 10.3934/dcdsb.2014.19.1249

[4]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[5]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[6]

T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195

[7]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[8]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[9]

Michael Shearer, Nicholas Giffen. Shock formation and breaking in granular avalanches. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 693-714. doi: 10.3934/dcds.2010.27.693

[10]

Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423

[11]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[12]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[13]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[14]

Yongki Lee, Hailiang Liu. Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 323-339. doi: 10.3934/dcds.2015.35.323

[15]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[16]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[17]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[18]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

[19]

René Pinnau, Oliver Tse. On a regularized system of self-gravitating particles. Kinetic & Related Models, 2014, 7 (3) : 591-604. doi: 10.3934/krm.2014.7.591

[20]

Pierre Degond, Marcello Delitala. Modelling and simulation of vehicular traffic jam formation. Kinetic & Related Models, 2008, 1 (2) : 279-293. doi: 10.3934/krm.2008.1.279

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]