June  2014, 7(3): 483-501. doi: 10.3934/dcdss.2014.7.483

Traffic light control: A case study

1. 

Department of Mathematics, University of Mannheim, D-68131 Mannheim

2. 

School of Business Informatics and Mathematics, University of Mannheim, D-68131 Mannheim, Germany

Received  May 2013 Revised  August 2013 Published  January 2014

This article is devoted to traffic flow networks including traffic lights at intersections. Mathematically, we consider a nonlinear dynamical traffic model where traffic lights are modeled as piecewise constant functions for red and green signals. The involved control problem is to find stop and go configurations depending on the current traffic volume. We propose a numerical solution strategy and present computational results.
Citation: Simone Göttlich, Ute Ziegler. Traffic light control: A case study. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 483-501. doi: 10.3934/dcdss.2014.7.483
References:
[1]

G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks,, Networks and Heterogeneous Media, 1 (2006), 57. doi: 10.3934/nhm.2006.1.57. Google Scholar

[2]

E. Brockfeld, R. Barlovic, A. Schadschneider and M. Schreckenberg, Optimizing traffic lights in a cellular automaton model for city traffic,, Physical Review E, 64 (2001). doi: 10.1103/PhysRevE.64.056132. Google Scholar

[3]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 599. doi: 10.3934/dcdsb.2005.5.599. Google Scholar

[4]

C. Claudel and A. Bayen, Convex formulations of data assimilation problems for a class of hamilton-jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383. doi: 10.1137/090778754. Google Scholar

[5]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM Journal on Mathematical Analysis, 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[6]

C. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601. doi: 10.3934/nhm.2006.1.601. Google Scholar

[7]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010). doi: 10.1137/1.9780898717600. Google Scholar

[8]

C. D'Apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM Journal on Mathematical Analysis, 38 (2006), 717. doi: 10.1137/050631628. Google Scholar

[9]

G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections,, Transportation Research Part B: Methodological, 45 (2011), 903. Google Scholar

[10]

A. Fügenschuh, S. Göttlich, M. Herty, A. Klar and A. Martin, A discrete optimization approach to large scale supply networks based on partial differential equations,, SIAM Journal on Scientific Computing, 30 (2008), 1490. doi: 10.1137/060663799. Google Scholar

[11]

A. Fügenschuh, M. Herty, A. Klar and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks,, SIAM Journal on Optimization, 16 (2006), 1155. doi: 10.1137/040605503. Google Scholar

[12]

S. Göttlich, M. Herty and U. Ziegler, Numerical discretization of Hamilton-Jacobi equations on networks,, Networks and Heterogenous Media, 8 (2013), 685. Google Scholar

[13]

S. Göttlich, M. Herty and U. Ziegler, Modeling and optimizing traffic light settings on road networks,, preprint, (2013). Google Scholar

[14]

S. Göttlich, S. Kühn and O. Kolb, Optimization for a special class of traffic flow models: combinatorial and continuous approaches,, preprint, (2013). Google Scholar

[15]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589. doi: 10.1007/s10957-005-5499-z. Google Scholar

[16]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM Journal on Scientific Computing, 25 (2003), 1066. doi: 10.1137/S106482750241459X. Google Scholar

[17]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM Journal on Mathematical Analysis, 26 (1995), 999. doi: 10.1137/S0036141093243289. Google Scholar

[18]

, IBM ILOG CPLEX Optimization Studio,, , (). Google Scholar

[19]

S. Lämmer and D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks,, Journal of Statistical Mechanics: Theory and Experiment, (2008). Google Scholar

[20]

J. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment,, Transportation Planning, (2004), 119. doi: 10.1007/0-306-48220-7_8. Google Scholar

[21]

W. Lin and C. Wang, An enhanced 0-1 mixed-integer LP formulation for traffic signal control,, IEEE Transactions on Intelligent Transportation Systems, 5 (2004), 238. doi: 10.1109/TITS.2004.838217. Google Scholar

[22]

P. Mazaré, A. Dehwah, C. Claudel and A. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727. Google Scholar

[23]

L. Zhao, X. Peng, L. Li and Z. Li, A fast signal timing algorithm for individual oversaturated intersections,, IEEE Transactions on Intelligent Transportation Systems, (2011), 1. doi: 10.1109/TITS.2010.2076808. Google Scholar

[24]

U. Ziegler, Mathematical Modelling, Simulation and Optimisation of Dynamic Transportation Networks with Applications in Production and Traffic,, Ph.D Thesis RWTH Aachen University, (2013). Google Scholar

show all references

References:
[1]

G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks,, Networks and Heterogeneous Media, 1 (2006), 57. doi: 10.3934/nhm.2006.1.57. Google Scholar

[2]

E. Brockfeld, R. Barlovic, A. Schadschneider and M. Schreckenberg, Optimizing traffic lights in a cellular automaton model for city traffic,, Physical Review E, 64 (2001). doi: 10.1103/PhysRevE.64.056132. Google Scholar

[3]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 599. doi: 10.3934/dcdsb.2005.5.599. Google Scholar

[4]

C. Claudel and A. Bayen, Convex formulations of data assimilation problems for a class of hamilton-jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383. doi: 10.1137/090778754. Google Scholar

[5]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM Journal on Mathematical Analysis, 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[6]

C. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601. doi: 10.3934/nhm.2006.1.601. Google Scholar

[7]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010). doi: 10.1137/1.9780898717600. Google Scholar

[8]

C. D'Apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM Journal on Mathematical Analysis, 38 (2006), 717. doi: 10.1137/050631628. Google Scholar

[9]

G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections,, Transportation Research Part B: Methodological, 45 (2011), 903. Google Scholar

[10]

A. Fügenschuh, S. Göttlich, M. Herty, A. Klar and A. Martin, A discrete optimization approach to large scale supply networks based on partial differential equations,, SIAM Journal on Scientific Computing, 30 (2008), 1490. doi: 10.1137/060663799. Google Scholar

[11]

A. Fügenschuh, M. Herty, A. Klar and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks,, SIAM Journal on Optimization, 16 (2006), 1155. doi: 10.1137/040605503. Google Scholar

[12]

S. Göttlich, M. Herty and U. Ziegler, Numerical discretization of Hamilton-Jacobi equations on networks,, Networks and Heterogenous Media, 8 (2013), 685. Google Scholar

[13]

S. Göttlich, M. Herty and U. Ziegler, Modeling and optimizing traffic light settings on road networks,, preprint, (2013). Google Scholar

[14]

S. Göttlich, S. Kühn and O. Kolb, Optimization for a special class of traffic flow models: combinatorial and continuous approaches,, preprint, (2013). Google Scholar

[15]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589. doi: 10.1007/s10957-005-5499-z. Google Scholar

[16]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM Journal on Scientific Computing, 25 (2003), 1066. doi: 10.1137/S106482750241459X. Google Scholar

[17]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM Journal on Mathematical Analysis, 26 (1995), 999. doi: 10.1137/S0036141093243289. Google Scholar

[18]

, IBM ILOG CPLEX Optimization Studio,, , (). Google Scholar

[19]

S. Lämmer and D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks,, Journal of Statistical Mechanics: Theory and Experiment, (2008). Google Scholar

[20]

J. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment,, Transportation Planning, (2004), 119. doi: 10.1007/0-306-48220-7_8. Google Scholar

[21]

W. Lin and C. Wang, An enhanced 0-1 mixed-integer LP formulation for traffic signal control,, IEEE Transactions on Intelligent Transportation Systems, 5 (2004), 238. doi: 10.1109/TITS.2004.838217. Google Scholar

[22]

P. Mazaré, A. Dehwah, C. Claudel and A. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727. Google Scholar

[23]

L. Zhao, X. Peng, L. Li and Z. Li, A fast signal timing algorithm for individual oversaturated intersections,, IEEE Transactions on Intelligent Transportation Systems, (2011), 1. doi: 10.1109/TITS.2010.2076808. Google Scholar

[24]

U. Ziegler, Mathematical Modelling, Simulation and Optimisation of Dynamic Transportation Networks with Applications in Production and Traffic,, Ph.D Thesis RWTH Aachen University, (2013). Google Scholar

[1]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[2]

Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control & Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008

[3]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[4]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[5]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[6]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks & Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[7]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[8]

Alessia Marigo. Optimal traffic distribution and priority coefficients for telecommunication networks. Networks & Heterogeneous Media, 2006, 1 (2) : 315-336. doi: 10.3934/nhm.2006.1.315

[9]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[10]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[11]

Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411

[12]

Yinfei Li, Shuping Chen. Optimal traffic signal control for an $M\times N$ traffic network. Journal of Industrial & Management Optimization, 2008, 4 (4) : 661-672. doi: 10.3934/jimo.2008.4.661

[13]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

[14]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[15]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[16]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[17]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[18]

Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks & Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279

[19]

Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154

[20]

Bavo Langerock. Optimal control problems with variable endpoints. Conference Publications, 2003, 2003 (Special) : 507-516. doi: 10.3934/proc.2003.2003.507

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]