August  2014, 7(4): 653-671. doi: 10.3934/dcdss.2014.7.653

Hardy-Littlewood-Sobolev systems and related Liouville theorems

1. 

Dipartimento di Matematica, Università degli Studi di Bari, via E.Orabona 4, I-70125 Bari, Italy

2. 

Dipartimento di Matematica e Geoscienze, Università di Trieste, via Alfonso Valerio 12/1, I-34100 Trieste, Italy

Received  November 2013 Published  February 2014

We prove some Liouville theorems for systems of integral equations and inequalities related to weighted Hardy-Littlewood-Sobolev inequality type on $R^N$ . Some semilinear singular or degenerate higher order elliptic inequalities associated to polyharmonic operators are considered. Special cases include the Hénon-Lane-Emden system.
Citation: Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653
References:
[1]

H. Brezis and and S. Kamin, Sublinear elliptic equations in $R^N$,, Manuscripta Math., 74 (1992), 87. doi: 10.1007/BF02567660.

[2]

A. Björn and J. Biörn, Nonlinear Potential Theory on Metric Spaces,, EMS Tracts in Mathematics, (2011). doi: 10.4171/099.

[3]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Liouville Theorems for some nonlinear inequalities,, Proc. Steklov Inst. Math., 260 (2008), 90. doi: 10.1134/S0081543808010070.

[4]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3.

[5]

W. Chen, C. Jin, C. Li and Jisun Lim, Weighted Hardy-Littlewood-Sobolev inequalities and Systems of integral equations,, Disc. and Cont. Dynamics Sys. Supplement, (2005), 164.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445.

[7]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[9]

C. Cowan, A Liouville theorem for a fourth order Hénon equation,, , ().

[10]

L. D'Ambrosio, E. Mitidieri and S. I. Pohozaev, Representation formulae and inequalities for solutions of a class of second order partial differential equations,, Trans. Amer. Math. Soc., 358 (2005), 893. doi: 10.1090/S0002-9947-05-03717-7.

[11]

L. Euler, Specimen transformationis singularis serierum,, Nova Acta Acad. Petropol., 7 (1778), 58.

[12]

M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture,, , ().

[13]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford University Press, (1993).

[14]

W. K. Hayman and P. B. Kennedy, Subharmonic functions,, I, (1976).

[15]

C. Jin and C. Li, Qualitative Analysis of Some Systems of Integral Equations,, Cal. Var. PDEs, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5.

[16]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[17]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, Journal of the European Mathematical Society, 6 (2004), 153.

[18]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorem for polyharmonic systems in $R^N$,, J. Differential Eq., 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016.

[19]

E. Mitidieri, Non existence of positive solutions of semilinear elliptic systems in $R^N$,, Differential & Integral Eq., 9 (1996), 465.

[20]

E. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions to nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.

[21]

E. M. Stein and G. Weiss, Fractional Integrals in n-dimensional Euclidean space,, J. Math. Mech., 7 (1958).

[22]

X. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258.

show all references

References:
[1]

H. Brezis and and S. Kamin, Sublinear elliptic equations in $R^N$,, Manuscripta Math., 74 (1992), 87. doi: 10.1007/BF02567660.

[2]

A. Björn and J. Biörn, Nonlinear Potential Theory on Metric Spaces,, EMS Tracts in Mathematics, (2011). doi: 10.4171/099.

[3]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Liouville Theorems for some nonlinear inequalities,, Proc. Steklov Inst. Math., 260 (2008), 90. doi: 10.1134/S0081543808010070.

[4]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3.

[5]

W. Chen, C. Jin, C. Li and Jisun Lim, Weighted Hardy-Littlewood-Sobolev inequalities and Systems of integral equations,, Disc. and Cont. Dynamics Sys. Supplement, (2005), 164.

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445.

[7]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[9]

C. Cowan, A Liouville theorem for a fourth order Hénon equation,, , ().

[10]

L. D'Ambrosio, E. Mitidieri and S. I. Pohozaev, Representation formulae and inequalities for solutions of a class of second order partial differential equations,, Trans. Amer. Math. Soc., 358 (2005), 893. doi: 10.1090/S0002-9947-05-03717-7.

[11]

L. Euler, Specimen transformationis singularis serierum,, Nova Acta Acad. Petropol., 7 (1778), 58.

[12]

M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture,, , ().

[13]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford University Press, (1993).

[14]

W. K. Hayman and P. B. Kennedy, Subharmonic functions,, I, (1976).

[15]

C. Jin and C. Li, Qualitative Analysis of Some Systems of Integral Equations,, Cal. Var. PDEs, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5.

[16]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[17]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, Journal of the European Mathematical Society, 6 (2004), 153.

[18]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorem for polyharmonic systems in $R^N$,, J. Differential Eq., 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016.

[19]

E. Mitidieri, Non existence of positive solutions of semilinear elliptic systems in $R^N$,, Differential & Integral Eq., 9 (1996), 465.

[20]

E. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions to nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.

[21]

E. M. Stein and G. Weiss, Fractional Integrals in n-dimensional Euclidean space,, J. Math. Mech., 7 (1958).

[22]

X. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258.

[1]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[2]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[3]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[4]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[5]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[6]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[7]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[8]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[9]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[10]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[11]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[12]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[13]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[14]

Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017

[15]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[16]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[17]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[18]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[19]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[20]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]