# American Institute of Mathematical Sciences

August  2014, 7(4): 793-805. doi: 10.3934/dcdss.2014.7.793

## Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus

 1 Dipartimento di Matematica, Università di Roma Sapienza, P.le A. Moro 2, 00185 Roma, Italy 2 Centro de Modelamiento Matemático, UMI 2807 CNRS-UChile, Universidad de Chile, Blanco Encalada 2120, Piso 7, Santiago, Chile

Received  July 2013 Revised  October 2013 Published  February 2014

We study the asymptotic behaviour as $p\rightarrow \infty$ of the nodal radial solutions $u_p$ of the problem \begin{equation*} \left\{ \begin{array}{rlll} -\Delta u&=&|u|^{p-1}u& \text{in }\Omega \\ u&=&0& \text{on }\partial\Omega, \end{array} \right. \end{equation*} where $\Omega$ is an annulus in $\mathbb{R}^N$, $N\geq 2$. We also analyze the spectrum of the linearized operator associated to $u_p$ in the case when $u_p$ has only two nodal regions. In particular, we prove that the Morse index of $u_p$ tends to $\infty$ as $p$ goes to $\infty$.
Citation: Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793
##### References:
 [1] Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar [2] T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains,, Math. Ann., 352 (2012), 485.  doi: 10.1007/s00208-011-0646-3.  Google Scholar [3] T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,, Topol. Methods Nonlinear Anal., 22 (2003), 1.   Google Scholar [4] F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , ().   Google Scholar [5] F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus,, Calc. Var. Partial Differential Equations, 40 (2011), 295.  doi: 10.1007/s00526-010-0341-3.  Google Scholar [6] M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus,, J. Differential Equations, 223 (2006), 96.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar [7] M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., ().   Google Scholar [8] W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67.  doi: 10.1002/cpa.3160380105.  Google Scholar

show all references

##### References:
 [1] Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar [2] T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains,, Math. Ann., 352 (2012), 485.  doi: 10.1007/s00208-011-0646-3.  Google Scholar [3] T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,, Topol. Methods Nonlinear Anal., 22 (2003), 1.   Google Scholar [4] F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , ().   Google Scholar [5] F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus,, Calc. Var. Partial Differential Equations, 40 (2011), 295.  doi: 10.1007/s00526-010-0341-3.  Google Scholar [6] M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus,, J. Differential Equations, 223 (2006), 96.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar [7] M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., ().   Google Scholar [8] W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67.  doi: 10.1002/cpa.3160380105.  Google Scholar
 [1] Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256 [2] Chia-Yu Hsieh. Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2657-2681. doi: 10.3934/dcdsb.2018269 [3] Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $\mathbb{R}^2$ when exponent approaches $+\infty$. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211 [4] M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 [5] Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713 [6] Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445 [7] Monica Musso, A. Pistoia. Sign changing solutions to a Bahri-Coron's problem in pierced domains. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 295-306. doi: 10.3934/dcds.2008.21.295 [8] Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 [9] Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268 [10] Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088 [11] Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151 [12] Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737 [13] Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125 [14] A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253 [15] Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143 [16] Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084 [17] Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489 [18] Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 [19] Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41 [20] João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure & Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571

2018 Impact Factor: 0.545