# American Institute of Mathematical Sciences

August  2014, 7(4): 823-838. doi: 10.3934/dcdss.2014.7.823

## Hopf fibration and singularly perturbed elliptic equations

 1 Dip. di Matematica, Universita degli Studi, Via Saldini 50, 20133 Milano 2 T.I.F.R. CAM, Bangalore, 560065, India

Received  November 2013 Revised  December 2013 Published  February 2014

In this article we show how the Hopf fibration can be used to generate special solutions of singularly perturbed elliptic equations on annuli. Indeed, by the Hopf fibration the equation can be reduced to a lower dimensional problem, to which known results on single (or multiple point) concentration can be applied. Reversing the reduction process, one obtains solutions concentrating on circles and spheres, which are given as the fibres of the Hopf fibration.
Citation: Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 823-838. doi: 10.3934/dcdss.2014.7.823
##### References:
 [1] A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. II,, Indiana Univ. Math. J., 53 (2004), 297. doi: 10.1512/iumj.2004.53.2400. [2] M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation,, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 947. doi: 10.1016/S0362-546X(01)00717-9. [3] V. Benci and T. d'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential,, J. Differential Equations, 184 (2002), 109. doi: 10.1006/jdeq.2001.4138. [4] A. Besse, Einstein Manifolds,, Springer, (1987). [5] J. Byeon and J. Park, Singularly perturbed nonlinaer elliptic problems on manifolds,, Calculus of Variations, 24 (2005), 459. doi: 10.1007/s00526-005-0339-4. [6] D. Cao and E. S. Noussair, Existance of symmetri multi-peaked solutions to singularly perturbed semilinear elliptic problems,, Comm. PDE, 25 (2000), 2185. doi: 10.1080/03605300008821582. [7] M. Clapp, M. Ghimenti and A. M. Micheletti, Solutions to a singularly perturbed supercritical elliptic equation on a Riemannian manifold concentrating at a submanifold,, preprint, (). [8] M. del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting,, Indiana Univ. Math. J., 48 (1999), 883. doi: 10.1512/iumj.1999.48.1596. [9] M. del Pino, M. Kowalczyk, Michal and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 60 (2007), 113. doi: 10.1002/cpa.20135. [10] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. [11] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. [12] S. Ishihara, Quaternion Kählerian manifolds,, J. Diff. Geometry, 9 (1974), 483. [13] , N. Johnson,, , (). [14] , S. Karigiannis,, , (). [15] C. S. Lin, W.-M. Ni and I. Takagi, Large amplituted stationary soutions to a chemotaxis system,, J. Diff. Equ., 72 (1988), 1. doi: 10.1016/0022-0396(88)90147-7. [16] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains,, Geometric and Functional Analysis GAFA, 15 (2005), 1162. doi: 10.1007/s00039-005-0542-7. [17] A. Malchiodi and M. Montenegro, Boundary layers of arbitrary dimension for a singularly perturbed Neumann problem,, Mat. Contemp., 27 (2004), 117. [18] A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105. doi: 10.1215/S0012-7094-04-12414-5. [19] B. B. Manna and P. N. Srikanth, On the solutions of a singular elliptic equation concentrating on two orthogonal spheres,, preprint., (). [20] W.-M. Ni and I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819. doi: 10.1002/cpa.3160440705. [21] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 68 (1995), 731. doi: 10.1002/cpa.3160480704. [22] Y-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$ ,, Comm. Partial Differential Equations, 13 (1988), 1499. doi: 10.1080/03605308808820585. [23] B. O'Neill, Semi-Riemannian Geometry,, Academic Press, (1983). [24] F. Pacella and P. N. Srikanth, A reduction method for semilinear elliptic equations and solutions concentrating on spheres,, to appear., (). [25] B. Ruf and P. N. Srikanth, Singularly pertubed elliptic equations with solutions concentrating on a $1$-dimensional orbit,, JEMS, 12 (2010), 413. doi: 10.4171/JEMS/203. [26] B. Ruf and P. N. Srikanth, Concentration on Hopf-Fibres for singularly perturbed elliptic equations,, preprint., (). [27] J. C. Wood, Harmonic morphisms between Riemannian manifolds,, in Modern Trends in Geometry and Topology, (2006), 397.

show all references

##### References:
 [1] A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. II,, Indiana Univ. Math. J., 53 (2004), 297. doi: 10.1512/iumj.2004.53.2400. [2] M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation,, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 947. doi: 10.1016/S0362-546X(01)00717-9. [3] V. Benci and T. d'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential,, J. Differential Equations, 184 (2002), 109. doi: 10.1006/jdeq.2001.4138. [4] A. Besse, Einstein Manifolds,, Springer, (1987). [5] J. Byeon and J. Park, Singularly perturbed nonlinaer elliptic problems on manifolds,, Calculus of Variations, 24 (2005), 459. doi: 10.1007/s00526-005-0339-4. [6] D. Cao and E. S. Noussair, Existance of symmetri multi-peaked solutions to singularly perturbed semilinear elliptic problems,, Comm. PDE, 25 (2000), 2185. doi: 10.1080/03605300008821582. [7] M. Clapp, M. Ghimenti and A. M. Micheletti, Solutions to a singularly perturbed supercritical elliptic equation on a Riemannian manifold concentrating at a submanifold,, preprint, (). [8] M. del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting,, Indiana Univ. Math. J., 48 (1999), 883. doi: 10.1512/iumj.1999.48.1596. [9] M. del Pino, M. Kowalczyk, Michal and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 60 (2007), 113. doi: 10.1002/cpa.20135. [10] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. [11] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. [12] S. Ishihara, Quaternion Kählerian manifolds,, J. Diff. Geometry, 9 (1974), 483. [13] , N. Johnson,, , (). [14] , S. Karigiannis,, , (). [15] C. S. Lin, W.-M. Ni and I. Takagi, Large amplituted stationary soutions to a chemotaxis system,, J. Diff. Equ., 72 (1988), 1. doi: 10.1016/0022-0396(88)90147-7. [16] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains,, Geometric and Functional Analysis GAFA, 15 (2005), 1162. doi: 10.1007/s00039-005-0542-7. [17] A. Malchiodi and M. Montenegro, Boundary layers of arbitrary dimension for a singularly perturbed Neumann problem,, Mat. Contemp., 27 (2004), 117. [18] A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105. doi: 10.1215/S0012-7094-04-12414-5. [19] B. B. Manna and P. N. Srikanth, On the solutions of a singular elliptic equation concentrating on two orthogonal spheres,, preprint., (). [20] W.-M. Ni and I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819. doi: 10.1002/cpa.3160440705. [21] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 68 (1995), 731. doi: 10.1002/cpa.3160480704. [22] Y-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$ ,, Comm. Partial Differential Equations, 13 (1988), 1499. doi: 10.1080/03605308808820585. [23] B. O'Neill, Semi-Riemannian Geometry,, Academic Press, (1983). [24] F. Pacella and P. N. Srikanth, A reduction method for semilinear elliptic equations and solutions concentrating on spheres,, to appear., (). [25] B. Ruf and P. N. Srikanth, Singularly pertubed elliptic equations with solutions concentrating on a $1$-dimensional orbit,, JEMS, 12 (2010), 413. doi: 10.4171/JEMS/203. [26] B. Ruf and P. N. Srikanth, Concentration on Hopf-Fibres for singularly perturbed elliptic equations,, preprint., (). [27] J. C. Wood, Harmonic morphisms between Riemannian manifolds,, in Modern Trends in Geometry and Topology, (2006), 397.
 [1] Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347 [2] Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331 [3] Susana Merchán, Luigi Montoro, I. Peral. Optimal reaction exponent for some qualitative properties of solutions to the $p$-heat equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 245-268. doi: 10.3934/cpaa.2015.14.245 [4] Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i [5] Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587 [6] Alfonso Castro, Jorge Cossio, Carlos Vélez. Existence and qualitative properties of solutions for nonlinear Dirichlet problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 123-140. doi: 10.3934/dcds.2013.33.123 [7] Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249 [8] Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599 [9] Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755 [10] Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893 [11] Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016 [12] Armen Shirikyan, Leonid Volevich. Qualitative properties of solutions for linear and nonlinear hyperbolic PDE's. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 517-542. doi: 10.3934/dcds.2004.10.517 [13] Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 [14] Alessandro Selvitella. Qualitative properties of stationary solutions of the NLS on the Hyperbolic space without and with external potentials. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2663-2677. doi: 10.3934/cpaa.2019118 [15] Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417 [16] Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50 [17] Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761 [18] Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751 [19] Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323 [20] Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

2018 Impact Factor: 0.545