\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Upscaling of reactive flows in domains with moving oscillating boundaries

Abstract / Introduction Related Papers Cited by
  • We consider the flow and transport of chemically reactive substances (precursors) in a channel over substrates having complex geometry. In particular, these substrates are in the form of trenches forming oscillating boundaries. The precursors react at the boundaries and get deposited. The deposited layers lead to changes in the geometry and are explicitly taken into account. Consequently, the system forms a free boundary problem. Using formal asymptotic techniques, we obtain the upscaled equations for the system where these equations are defined on a domain with flat boundaries. This provides a huge gain in computational time. Numerical experiments show the effectiveness of the upscaling process.
    Mathematics Subject Classification: 76M50, 76M45, 35R35, 35R37, 74Qxx, 74F25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var., 4 (1999), 209-243 (electronic).doi: 10.1051/cocv:1999110.

    [2]

    J. M. Arrieta and S. M. Bruschi, Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 327-351.doi: 10.3934/dcdsb.2010.14.327.

    [3]

    J. M. Arrieta and M. C. Pereira, Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl. (9), 96 (2011), 29-57.doi: 10.1016/j.matpur.2011.02.003.

    [4]

    K. Baber, K. Mosthaf, B. Flemisch, R. Helmig, S. Müthing and B. Wohlmuth, Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow, IMA J. Appl. Math., 77 (2012), 887-909.doi: 10.1093/imamat/hxs048.

    [5]

    J. Bogers, K. Kumar, P. H. L. Notten, J. F. M. Oudenhoven and I. S. Pop, A multiscale domain decomposition approach for chemical vapor deposition, J. Comput. Appl. Math., 246 (2013), 65-73.doi: 10.1016/j.cam.2012.10.018.

    [6]

    G. A. Chechkin, A. Friedman and A. L. Piatnitski, The boundary-value problem in domains with very rapidly oscillating boundary, J. Math. Anal. Appl., 231 (1999), 213-234.doi: 10.1006/jmaa.1998.6226.

    [7]

    J. Donea, A. Huerta, J.-Ph. Ponthot and A. Rodriguez-Ferran, Arbitrary Lagrangian-Eulerian methods, The Encyclopedia of Computational Mechanics, Wiley, 1 (2004), 413-437.

    [8]

    C. J. van Duijn and P. Knabner, Travelling wave behaviour of crystal dissolution in porous media flow, European J. Appl. Math., 8 (1997), 49-72.

    [9]

    C. J. van Duijn, A. Mikelic, C. Rosier and I. S. Pop, Effective dispersion equations for reactive flows with dominant peclet and damkohler numbers, Advances in Chemical Engineering, 34 (2008), 1-45.

    [10]

    C. J. van Duijn and I. S. Pop, Crystal dissolution and precipitation in porous media: pore scale analysis, J. Reine Angew. Math., 577 (2004), 171-211.doi: 10.1515/crll.2004.2004.577.171.

    [11]

    A. Friedman and B. Hu, A non-stationary multi-scale oscillating free boundary for the Laplace and heat equations, J. Differential Equations, 137 (1997), 119-165.doi: 10.1016/S0022-0396(06)80006-9.

    [12]

    A. Friedman, B. Hu and Y. Liu, A boundary value problem for the Poisson equation with multi-scale oscillating boundary, J. Differential Equations, 137 (1997), 54-93.doi: 10.1006/jdeq.1997.3257.

    [13]

    M. K. Gobbert and C. A. Ringhofer, An asymptotic analysis for a model of chemical vapor deposition on a microstructured surface, SIAM J. Appl. Math., 58 (1998), 737-752 (electronic).doi: 10.1137/S0036139999528467.

    [14]

    F. Golfier, B. D. Wood, L. Orgogozo, M. Quintard and M. Buès, Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium, Adv. Water Res., 32 (2009), 463-485.doi: 10.1016/j.advwatres.2008.11.012.

    [15]

    E. Hairer and G. Wanner, On the instability of the BDF formulas, SIAM J. Numer. Anal., 20 (1983), 1206-1209.doi: 10.1137/0720090.

    [16]
    [17]

    W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 403-465.

    [18]

    W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60 (2000), 1111-1127 (electronic).doi: 10.1137/S003613999833678X.

    [19]

    W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, 170 (2001), 96-122.doi: 10.1006/jdeq.2000.3814.

    [20]

    K. Kumar, M. van Helvoort and I. S. Pop, Rigorous upscaling of rough boundaries for reactive flows, CASA Report 12-37, 2012.

    [21]

    K. Kumar, T. L. van Noorden and I. S. Pop, Effective dispersion equations for reactive flows involving free boundaries at the microscale, Multiscale Model. Simul., 9 (2011), 29-58.doi: 10.1137/100804553.

    [22]
    [23]

    K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak and B. Wohlmuth, A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow, Water Resour. Res., 47 (2011), W10522.doi: 10.1029/2011WR010685.

    [24]

    N. Neuss, M. Neuss-Radu and A. Mikelić, Effective laws for the Poisson equation on domains with curved oscillating boundaries, Appl. Anal., 85 (2006), 479-502.doi: 10.1080/00036810500340476.

    [25]

    T. L. van Noorden, Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments, Multiscale Model. Simul., 7 (2008), 1220-1236.doi: 10.1137/080722096.

    [26]

    T. L. van Noorden, Crystal precipitation and dissolution in a thin strip, European J. Appl. Math., 20 (2009), 69-91.doi: 10.1017/S0956792508007651.

    [27]

    T. L. van Noorden, I. S. Pop, A. Ebigbo and R. Helmig, An upscaled model for biofilm growth in a thin strip, Water Resour. Res., 46 (2010), W06505.

    [28]

    P. H. L. Notten, F. Roozeboom, R. A. H. Niessen and L. Baggetto, 3-d integrated all-solid-state rechargeable batteries, Advanced Materials, 19 (2007), 4564-4567.doi: 10.1002/adma.200702398.

    [29]

    J. F. M. Oudenhoven, L. Bagetto and P. H. L. Notten, All-solid-state lithium-ion microbatteries: A review of vaious three-dimensional concepts, Advanced Energy Materials, 1 (2011), 10-33.

    [30]

    J. F. M. Oudenhoven, T. van Dongen, R. A. H. Niessen, M. H. J. M. de Croon and P. H. L. Notten, Low-pressure chemical vapor deposition of licoo2 thin films: A systematic investigation of the deposition parameters, Journal of the Electrochemical Society, 156 (2009), D159-D174.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return