2014, 7(5): 967-979. doi: 10.3934/dcdss.2014.7.967

Linearized stationary incompressible flow around rotating and translating bodies -- Leray solutions

1. 

Univ Lille Nord de France, 59000 Lille

2. 

Department of Technical Mathematics, Czech Technical University, Karlovo nám. 13, 121 35 Prague 2

3. 

Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1

Received  April 2013 Published  May 2014

We consider Leray solutions of the Oseen system with rotational terms, in an exterior domain. Such solutions are characterized by square-integrability of the gradient of the velocity and local square-integrability of the pressure. In a previous paper, we had shown a pointwise decay result for a slightly stronger type of solution. Here this result is extended to Leray solutions. We thus present a second access to this result, besides the one in G. P. Galdi, M. Kyed, Arch. Rat. Mech. Anal., 200 (2011), 21-58.
Citation: Paul Deuring, Stanislav Kračmar, Šárka Nečasová. Linearized stationary incompressible flow around rotating and translating bodies -- Leray solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 967-979. doi: 10.3934/dcdss.2014.7.967
References:
[1]

P. Deuring, S. Kračmar and Š. Nečasová, A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 237. doi: 10.3934/dcdss.2010.3.237.

[2]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies,, SIAM J. Math. Anal., 43 (2011), 705. doi: 10.1137/100786198.

[3]

P. Deuring, S. Kračmar and Š. Nečasová, Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity,, J. Differential Equations, 252 (2012), 459. doi: 10.1016/j.jde.2011.08.037.

[4]

P. Deuring, S. Kračmar and Š. Nečasová, A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient,, in Discrete Contin. Dyn. Syst. 2011, (2011), 351.

[5]

P. Deuring, S. Kračmar and Š. Nečasová, Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity,, J. of Differential Equations, 255 (2013), 1576. doi: 10.1016/j.jde.2013.05.016.

[6]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409. doi: 10.1007/BF02571437.

[7]

R. Farwig, An $L^q$-analysis of viscous fluid flow past a rotating obstacle,, Tôhoku Math. J., 58 (2006), 1. doi: 10.2748/tmj/1145390210.

[8]

R. Farwig, Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle,, Banach Center Publications, 70 (2005), 73. doi: 10.4064/bc70-0-5.

[9]

R. Farwig, G. P. Galdi and M. Kyed, Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body,, Pacific J. Math., 253 (2011), 367. doi: 10.2140/pjm.2011.253.367.

[10]

R. Farwig and T. Hishida, Stationary Navier-Stokes flow around a rotating obstacle,, Funkcialaj Ekvacioj, 50 (2007), 371. doi: 10.1619/fesi.50.371.

[11]

R. Farwig and T. Hishida, Asymptotic profiles of steady Stokes and Navier-Stokes flows around a rotating obstacle,, Ann. Univ. Ferrara, 55 (2009), 263. doi: 10.1007/s11565-009-0072-6.

[12]

R. Farwig and T. Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle,, Manuscripta Math., 136 (2011), 315. doi: 10.1007/s00229-011-0479-0.

[13]

R. Farwig and T. Hishida, Leading term at infinity of steady Navier-Stokes flow around a rotating obstacle,, Math. Nachr., 284 (2011), 2065. doi: 10.1002/mana.200910192.

[14]

R. Farwig, T. Hishida and D. Müller, $L^q$-theory of a singular "winding'' integral operator arising from fluid dynamics,, Pacific J. Math., 215 (2004), 297. doi: 10.2140/pjm.2004.215.297.

[15]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$ approach to Stokes flow around a rotating body,, Ann. Univ. Ferrara, 54 (2008), 61. doi: 10.1007/s11565-008-0040-6.

[16]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$-approach to Oseen flow around a rotating body,, Math. Meth. Appl. Sci., 31 (2008), 551. doi: 10.1002/mma.925.

[17]

R. Farwig and J. Neustupa, On the spectrum of a Stokes-type operator arising from flow around a rotating body,, Manuscripta Math., 122 (2007), 419. doi: 10.1007/s00229-007-0078-2.

[18]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,, Springer Tracts in Natural Philosophy, (1998). doi: 10.1007/978-1-4612-5364-8.

[19]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in Handbook of Mathematical Fluid Dynamics. Vol. I (eds. S. Friedlander and D. Serre), (2002), 653.

[20]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, 2nd edition, (2011). doi: 10.1007/978-0-387-09620-9.

[21]

G. P. Galdi and M. Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable,, Arch. Rat. Mech. Anal., 200 (2011), 21. doi: 10.1007/s00205-010-0350-6.

[22]

G. P. Galdi and M. Kyed, Asymptotic behavior of a Leray solution around a rotating obstacle,, Progress in Nonlinear Differential Equations and Their Applications, 60 (2011), 251. doi: 10.1007/978-3-0348-0075-4_13.

[23]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Am. Math. Soc., 141 (2013), 573. doi: 10.1090/S0002-9939-2012-11638-7.

[24]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions,, Proc. Am. Math. Soc., 141 (2013), 1313. doi: 10.1090/S0002-9939-2012-11640-5.

[25]

G. P. Galdi and A. S. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle,, Arch. Rat. Mech. Anal., 176 (2005), 331. doi: 10.1007/s00205-004-0348-z.

[26]

G. P. Galdi and S. A. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body,, Arch. Rat. Mech. Anal., 184 (2007), 371. doi: 10.1007/s00205-006-0026-4.

[27]

G. P. Galdi and S. A. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake,, RIMS Kôkyûroku Bessatsu, B1 (2008), 108.

[28]

R. B. Guenther and E. A. Thomann, The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions - time dependent case,, J. Math. Fluid Mech., 8 (2006), 77. doi: 10.1007/s00021-004-0139-1.

[29]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Rat. Mech. Anal., 150 (1999), 307. doi: 10.1007/s002050050190.

[30]

T. Hishida, The Stokes operator with rotating effect in exterior domains,, Analysis, 19 (1999), 51. doi: 10.1524/anly.1999.19.1.51.

[31]

T. Hishida, $L^q$ estimates of weak solutions to the stationary Stokes equations around a rotating body,, J. Math. Soc. Japan, 58 (2006), 744. doi: 10.2969/jmsj/1156342036.

[32]

T. Hishida and Y. Shibata, $L_p$-$L_q$ estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle,, RIMS Kôkyûroku Bessatsu, B1 (2007), 167.

[33]

S. Kračmar, M. Krbec, Š. Nečasová, P. Penel and K. Schumacher, On the $L^q$-approach with generalized anisotropic weights of the weak solution of the Oseen flow around a rotating body,, Nonlinear Analysis, 71 (2009). doi: 10.1016/j.na.2009.07.017.

[34]

S. Kračmar, Š. Nečasová and P. Penel, Estimates of weak solutions in anisotropically weighted Sobolev spaces to the stationary rotating Oseen equations,, IASME Transactions, 2 (2005), 854.

[35]

S. Kračmar, Š. Nečasová and P. Penel, Anisotropic $L^2$ estimates of weak solutions to the stationary Oseen type equations in $ \mathbbR ^{3}$ for a rotating body,, RIMS Kôkyûroku Bessatsu, B1 (2007), 219.

[36]

S. Kračmar, Š. Nečasová and P. Penel, Anisotropic $L^2$ estimates of weak solutions to the stationary Oseen type equations in 3D - exterior domain for a rotating body,, J. Math. Soc. Japan, 62 (2010), 239. doi: 10.2969/jmsj/06210239.

[37]

S. Kračmar and P. Penel, Variational properties of a generic model equation in exterior 3D domains,, Funkcialaj Ekvacioj, 47 (2004), 499. doi: 10.1619/fesi.47.499.

[38]

S. Kračmar and P. Penel, New regularity results for a generic model equation in exterior 3D domains,, Banach Center Publications Warsaw, 70 (2005), 139. doi: 10.4064/bc70-0-9.

[39]

M. Kyed, Asymptotic profile of a linearized flow past a rotating body,, Quart. Appl. Math., 71 (2013), 489. doi: 10.1090/S0033-569X-2013-01288-7.

[40]

M. Kyed, On the asymptotic structure of a Navier-Stokes flow past a rotating body,, to appear in J. Math. Soc. Japan., (). doi: 10.2969/jmsj/06610001.

[41]

M. Kyed, On a mapping property of the Oseen operator with rotation,, Discrete Contin. Dynam. Syst. - Ser. S., 6 (2013), 1315. doi: 10.3934/dcdss.2013.6.1315.

[42]

Š. Nečasová, Asymptotic properties of the steady fall of a body in viscous fluids,, Math. Meth. Appl. Sci., 27 (2004), 1969. doi: 10.1002/mma.467.

[43]

Š. Nečasová, On the problem of the Stokes flow and Oseen flow in $\mathbbR^{3}$ with Coriolis force arising from fluid dynamics,, IASME Transaction, 2 (2005), 1262.

[44]

Š. Nečasová, K. Schumacher, Strong solution to the Stokes equations of a flow around a rotating body in weighted $L^q$ spaces,, Math. Nachr., 284 (2011), 1701. doi: 10.1002/mana.200810166.

show all references

References:
[1]

P. Deuring, S. Kračmar and Š. Nečasová, A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 237. doi: 10.3934/dcdss.2010.3.237.

[2]

P. Deuring, S. Kračmar and Š. Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies,, SIAM J. Math. Anal., 43 (2011), 705. doi: 10.1137/100786198.

[3]

P. Deuring, S. Kračmar and Š. Nečasová, Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity,, J. Differential Equations, 252 (2012), 459. doi: 10.1016/j.jde.2011.08.037.

[4]

P. Deuring, S. Kračmar and Š. Nečasová, A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient,, in Discrete Contin. Dyn. Syst. 2011, (2011), 351.

[5]

P. Deuring, S. Kračmar and Š. Nečasová, Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity,, J. of Differential Equations, 255 (2013), 1576. doi: 10.1016/j.jde.2013.05.016.

[6]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211 (1992), 409. doi: 10.1007/BF02571437.

[7]

R. Farwig, An $L^q$-analysis of viscous fluid flow past a rotating obstacle,, Tôhoku Math. J., 58 (2006), 1. doi: 10.2748/tmj/1145390210.

[8]

R. Farwig, Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle,, Banach Center Publications, 70 (2005), 73. doi: 10.4064/bc70-0-5.

[9]

R. Farwig, G. P. Galdi and M. Kyed, Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body,, Pacific J. Math., 253 (2011), 367. doi: 10.2140/pjm.2011.253.367.

[10]

R. Farwig and T. Hishida, Stationary Navier-Stokes flow around a rotating obstacle,, Funkcialaj Ekvacioj, 50 (2007), 371. doi: 10.1619/fesi.50.371.

[11]

R. Farwig and T. Hishida, Asymptotic profiles of steady Stokes and Navier-Stokes flows around a rotating obstacle,, Ann. Univ. Ferrara, 55 (2009), 263. doi: 10.1007/s11565-009-0072-6.

[12]

R. Farwig and T. Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle,, Manuscripta Math., 136 (2011), 315. doi: 10.1007/s00229-011-0479-0.

[13]

R. Farwig and T. Hishida, Leading term at infinity of steady Navier-Stokes flow around a rotating obstacle,, Math. Nachr., 284 (2011), 2065. doi: 10.1002/mana.200910192.

[14]

R. Farwig, T. Hishida and D. Müller, $L^q$-theory of a singular "winding'' integral operator arising from fluid dynamics,, Pacific J. Math., 215 (2004), 297. doi: 10.2140/pjm.2004.215.297.

[15]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$ approach to Stokes flow around a rotating body,, Ann. Univ. Ferrara, 54 (2008), 61. doi: 10.1007/s11565-008-0040-6.

[16]

R. Farwig, M. Krbec and Š. Nečasová, A weighted $L^q$-approach to Oseen flow around a rotating body,, Math. Meth. Appl. Sci., 31 (2008), 551. doi: 10.1002/mma.925.

[17]

R. Farwig and J. Neustupa, On the spectrum of a Stokes-type operator arising from flow around a rotating body,, Manuscripta Math., 122 (2007), 419. doi: 10.1007/s00229-007-0078-2.

[18]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems,, Springer Tracts in Natural Philosophy, (1998). doi: 10.1007/978-1-4612-5364-8.

[19]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in Handbook of Mathematical Fluid Dynamics. Vol. I (eds. S. Friedlander and D. Serre), (2002), 653.

[20]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, 2nd edition, (2011). doi: 10.1007/978-0-387-09620-9.

[21]

G. P. Galdi and M. Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable,, Arch. Rat. Mech. Anal., 200 (2011), 21. doi: 10.1007/s00205-010-0350-6.

[22]

G. P. Galdi and M. Kyed, Asymptotic behavior of a Leray solution around a rotating obstacle,, Progress in Nonlinear Differential Equations and Their Applications, 60 (2011), 251. doi: 10.1007/978-3-0348-0075-4_13.

[23]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Am. Math. Soc., 141 (2013), 573. doi: 10.1090/S0002-9939-2012-11638-7.

[24]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions,, Proc. Am. Math. Soc., 141 (2013), 1313. doi: 10.1090/S0002-9939-2012-11640-5.

[25]

G. P. Galdi and A. S. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle,, Arch. Rat. Mech. Anal., 176 (2005), 331. doi: 10.1007/s00205-004-0348-z.

[26]

G. P. Galdi and S. A. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body,, Arch. Rat. Mech. Anal., 184 (2007), 371. doi: 10.1007/s00205-006-0026-4.

[27]

G. P. Galdi and S. A. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake,, RIMS Kôkyûroku Bessatsu, B1 (2008), 108.

[28]

R. B. Guenther and E. A. Thomann, The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions - time dependent case,, J. Math. Fluid Mech., 8 (2006), 77. doi: 10.1007/s00021-004-0139-1.

[29]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Rat. Mech. Anal., 150 (1999), 307. doi: 10.1007/s002050050190.

[30]

T. Hishida, The Stokes operator with rotating effect in exterior domains,, Analysis, 19 (1999), 51. doi: 10.1524/anly.1999.19.1.51.

[31]

T. Hishida, $L^q$ estimates of weak solutions to the stationary Stokes equations around a rotating body,, J. Math. Soc. Japan, 58 (2006), 744. doi: 10.2969/jmsj/1156342036.

[32]

T. Hishida and Y. Shibata, $L_p$-$L_q$ estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle,, RIMS Kôkyûroku Bessatsu, B1 (2007), 167.

[33]

S. Kračmar, M. Krbec, Š. Nečasová, P. Penel and K. Schumacher, On the $L^q$-approach with generalized anisotropic weights of the weak solution of the Oseen flow around a rotating body,, Nonlinear Analysis, 71 (2009). doi: 10.1016/j.na.2009.07.017.

[34]

S. Kračmar, Š. Nečasová and P. Penel, Estimates of weak solutions in anisotropically weighted Sobolev spaces to the stationary rotating Oseen equations,, IASME Transactions, 2 (2005), 854.

[35]

S. Kračmar, Š. Nečasová and P. Penel, Anisotropic $L^2$ estimates of weak solutions to the stationary Oseen type equations in $ \mathbbR ^{3}$ for a rotating body,, RIMS Kôkyûroku Bessatsu, B1 (2007), 219.

[36]

S. Kračmar, Š. Nečasová and P. Penel, Anisotropic $L^2$ estimates of weak solutions to the stationary Oseen type equations in 3D - exterior domain for a rotating body,, J. Math. Soc. Japan, 62 (2010), 239. doi: 10.2969/jmsj/06210239.

[37]

S. Kračmar and P. Penel, Variational properties of a generic model equation in exterior 3D domains,, Funkcialaj Ekvacioj, 47 (2004), 499. doi: 10.1619/fesi.47.499.

[38]

S. Kračmar and P. Penel, New regularity results for a generic model equation in exterior 3D domains,, Banach Center Publications Warsaw, 70 (2005), 139. doi: 10.4064/bc70-0-9.

[39]

M. Kyed, Asymptotic profile of a linearized flow past a rotating body,, Quart. Appl. Math., 71 (2013), 489. doi: 10.1090/S0033-569X-2013-01288-7.

[40]

M. Kyed, On the asymptotic structure of a Navier-Stokes flow past a rotating body,, to appear in J. Math. Soc. Japan., (). doi: 10.2969/jmsj/06610001.

[41]

M. Kyed, On a mapping property of the Oseen operator with rotation,, Discrete Contin. Dynam. Syst. - Ser. S., 6 (2013), 1315. doi: 10.3934/dcdss.2013.6.1315.

[42]

Š. Nečasová, Asymptotic properties of the steady fall of a body in viscous fluids,, Math. Meth. Appl. Sci., 27 (2004), 1969. doi: 10.1002/mma.467.

[43]

Š. Nečasová, On the problem of the Stokes flow and Oseen flow in $\mathbbR^{3}$ with Coriolis force arising from fluid dynamics,, IASME Transaction, 2 (2005), 1262.

[44]

Š. Nečasová, K. Schumacher, Strong solution to the Stokes equations of a flow around a rotating body in weighted $L^q$ spaces,, Math. Nachr., 284 (2011), 1701. doi: 10.1002/mana.200810166.

[1]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 237-253. doi: 10.3934/dcdss.2010.3.237

[2]

Paul Deuring. Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2757-2776. doi: 10.3934/dcds.2013.33.2757

[3]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[4]

Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

[5]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient . Conference Publications, 2011, 2011 (Special) : 351-361. doi: 10.3934/proc.2011.2011.351

[6]

Minoru Murai, Waichiro Matsumoto, Shoji Yotsutani. Representation formula for the plane closed elastic curves. Conference Publications, 2013, 2013 (special) : 565-585. doi: 10.3934/proc.2013.2013.565

[7]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[8]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[9]

Giancarlo Benettin, Anna Maria Cherubini, Francesco Fassò. Regular and chaotic motions of the fast rotating rigid body: a numerical study. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 521-540. doi: 10.3934/dcdsb.2002.2.521

[10]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[11]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[12]

Liming Ling. The algebraic representation for high order solution of Sasa-Satsuma equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1975-2010. doi: 10.3934/dcdss.2016081

[13]

Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 475-500. doi: 10.3934/dcdss.2016008

[14]

Oana Pocovnicu. Explicit formula for the solution of the Szegö equation on the real line and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 607-649. doi: 10.3934/dcds.2011.31.607

[15]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[16]

Hideo Ikeda, Koji Kondo, Hisashi Okamoto, Shoji Yotsutani. On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows . Communications on Pure & Applied Analysis, 2003, 2 (3) : 381-390. doi: 10.3934/cpaa.2003.2.381

[17]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[18]

Michel Cristofol, Jimmy Garnier, François Hamel, Lionel Roques. Uniqueness from pointwise observations in a multi-parameter inverse problem. Communications on Pure & Applied Analysis, 2012, 11 (1) : 173-188. doi: 10.3934/cpaa.2012.11.173

[19]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[20]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (4)

[Back to Top]