\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of a tethered satellite with variable mass

Abstract / Introduction Related Papers Cited by
  • In this paper, we provide an analytical study regarding the dynamics of a tethered satellite system, when the central gravitational field is generated by a variable mass object. We show that, in general, the equations of motion for the tethered satellite in the general case as well as in satellite approximation become different from the classical ones, provided that variable mass is considered. We also prove that these expressions could be reduced to the classical ones under the first Meshcherskii's law for variable mass. Moreover, we show that Meshcherskii's transformation is not valid for the dynamics of a dumbbell satellite system.
    Mathematics Subject Classification: Primary: 70E17, 70E20, 70E40; Secondary: 37C27.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera, Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body, Communications in Nonlinear Science and Numerical Simulation, 20 (2015), 1057-1069.doi: 10.1016/j.cnsns.2014.06.033.

    [2]

    F. Austin, Nonlinear dynamics of free-rotating flexibly connected double-mass space station, Journal of Spacecraft and Rockets, 2 (1965), 901-906.

    [3]

    G. Avanzini and M. Fedi, Effects of eccentricity of the reference orbit on multi-tethered satellite formations, Acta Astronautica, 94 (2014), 338-350.doi: 10.1016/j.actaastro.2013.03.019.

    [4]

    V. V. Beletsky and E. M. Levin, Dynamics of Space Tether Systems, Univelt, San Diego, 1993.

    [5]

    V. V. Beletsky, Motion of an Artificial Satellite about its Center of Mass, Israel Program for Scientific Translations, Jerusalem, 1966.

    [6]

    A. Burov and A. Dugain, Planar oscillations of a vibrating dumbbell-like body in a central field of forces, Cosmic Research, 49 (2011), 353-359.doi: 10.1134/S0010952511040010.

    [7]

    A. Burov, I. I. Kosenko and H. Troger, On periodic motions of an orbital dumbbell-shaped body with a cabin-elevator, Mechanics of Solids, 47 (2012), 269-284.doi: 10.3103/S0025654412030028.

    [8]

    A. Celletti and V. Sidorenko, Some properties of the dumbbell satellite attitude dynamics, Celest. Mech. Dyn. Astr., 101 (2008), 105-126.doi: 10.1007/s10569-008-9122-0.

    [9]

    V. Chobotov, Gravitational excitation of extensible dumbbell satellite, Journal of Spacecraft and Rockets, 4 (1967), 1295-1300.doi: 10.2514/3.29074.

    [10]

    G. Colombo, E. M. Gaposchkin, M. D. Grossi and G. C. Weiffenbach, The skyhook: A shuttle-borne tool for low-orbital-altitude research, Meccanica, 10 (1975), 3-20.doi: 10.1007/BF02148280.

    [11]

    M. L. Cosmo and E. C. Lorenzini, Tethers in Space Handbook, 3rd Ed., NASA Marshall Space Flight Center, Huntsville, 1997.

    [12]

    L. Gang, H. Jing, M. Guangfu and L. Chuanjiang, Nonlinear dynamics and station keeping control of a rotating tethered satellite system in halo orbits, Chinese Journal of Aeronautics, 26 (2013), 1227-1237.

    [13]

    J. L. G. Guirao, J. A. Vera and B. A. Wade, On the periodic solutions of a rigid dumbbell satellite in a circular orbit, Astrophys Space Sci, 346 (2013), 437-442.doi: 10.1007/s10509-013-1456-8.

    [14]

    F. C. Hurlbut and J. L. Potter, Tethered aerothermodynamic research needs, Journal of Spacecraft and Rockets, 28 (1991), 50-57.doi: 10.2514/6.1990-533.

    [15]

    S. K. Jha and A. K. Shrivastava, Equations of motion of the elliptical restricted problem of three bodies with variable masses, The Astronomical Journal, 121 (2001), 580-583.doi: 10.1086/318006.

    [16]

    A. J. Maciejewski, M. Przybylska, L. Simpson and W. Szumiński, Non-integrability of the dumbbell and point mass problem, Celest. Mech. Dyn. Astr., 117 (2013), 315-330.doi: 10.1007/s10569-013-9514-7.

    [17]

    I. V. Meshcherskii, Works on the Mechanics of Bodies of Variable Mass, GITTL, Moscow, 1952.

    [18]

    M. A. Munitsina, Relative equilibrium on the circular Keplerian orbit of the "Dumbbells-Load'' system with unilateral connections, Automation and Remote Control, 68 (2007), 1476-1481.doi: 10.1134/S0005117907090020.

    [19]

    K. Nakanishi, H. Kojima and T. Watanabe, Trajectories of in-plane periodic solutions of tethered satellite system projected on van der Pol planes, Acta Astronautica, 68 (2011), 1024-1030.doi: 10.1016/j.actaastro.2010.09.014.

    [20]

    D. D. Nixon, Dynamics of a spinning space station with a counterweight connected by multiple cables, Journal of Spacecraft and Rockets, 9 (1972), 896-902.doi: 10.2514/6.1972-172.

    [21]

    M. Pasca and E. Lorenzini, Collection of martian atmospheric dust with a low altitude tethered probe, in Spaceflight Mechanics 1991; Proceedings of the 1st AAS/AIAA Annual Spaceflight Mechanics Meeting, Houston, TX, 1991, 1121-1139.

    [22]

    C. D. Pengelley, Preliminary survey of dynamic stability of cable-connected spinning space station, Journal of Spacecraft and Rockets, 3 (1966), 1456-1462.doi: 10.2514/3.28677.

    [23]

    K. A. Polzin, E. Y. Choueiri, P. Gurfil and N. J. Kasdin, Plasma propulsion options for multiple terrestrial planet finder architectures, Journal of Spacecraft and Rockets, 39 (2002), 347-356.doi: 10.2514/2.3833.

    [24]

    M. B. Quadrelli, Dynamics and control of novel orbiting formations with internal dynamics, Journal of the Astronautical Sciences, 51 (2003), 319-337.

    [25]

    B. Wong and A. Misra, Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points, Acta Astronautica, 63 (2008), 1178-1187.doi: 10.1016/j.actaastro.2008.06.022.

    [26]

    W. Zhang, F. B. Gao and M. H. Yao, Periodic solutions and stability of a tethered satellite system, Mechanics Research Communications, 44 (2012), 24-29.doi: 10.1016/j.mechrescom.2012.05.004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return