\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid

Abstract / Introduction Related Papers Cited by
  • The main aim of the present work is to study the positions of the equilibria points and their stability in the frame work of satellite approximation. The significant implication is that the motion around these points is unstable in the linear sense. The principle of angular momentum conservation is used as a tool to reduce the degree of freedom of the dynamical systems of equations. The positions of the relative equilibria are explicitly found as well as necessary and sufficient conditions for stable motion in the linear sense are stated.
    Mathematics Subject Classification: Primary: 70F05, 37C27, 37J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. I. Abouelmagd, Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophysics and Space Science, 342 (2012), 45-53.doi: 10.1007/s10509-012-1162-y.

    [2]

    E. I. Abouelmagd, M. E. Awad, E. M. A. Elzayat and I. A. Abbas, Reduction the secular solution to periodic solution in the generalized restricted three-body problem, Astrophysics and Space Science, 350 (2014), 495-505.doi: 10.1007/s10509-013-1756-z.

    [3]

    E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera, Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body, Commun. Nonlinear Sci. Numer Simulation, 20 (2015), 1057-1069.doi: 10.1016/j.cnsns.2014.06.033.

    [4]

    E. I. Abouelmagd, M. C. Alhothuali, J. L. G. Guirao and H. M. Malaikah, The effect of zonal harmonic coefficients in the framework of the restricted three朾ody problem, Advances in Space Research, 55 (2015), 1660-1672.doi: 10.1016/j.asr.2014.12.030.

    [5]

    G. Avanzini and M. Fedi, Effects of eccentricity of the reference orbit on multi-tethered satellite formations, Acta Astronautica, 94 (2014), 338-350.doi: 10.1016/j.actaastro.2013.03.019.

    [6]

    A. A. Burov, I. I. Kosenko and H. Troger, On periodic motions of an orbital dumbbell-shaped body with a cabin-elevator, Mechanics of Solids, 47 (2012), 269-284.doi: 10.3103/S0025654412030028.

    [7]

    A. Celletti and V. Sidorenko, Some properties of the dumbbell satellite attitude dynamics, Celest. Mech. Dyn. Astr., 101 (2008), 105-126.doi: 10.1007/s10569-008-9122-0.

    [8]

    K. Nakanishi, H. Kojima and T. Watanabe, Trajectories of in-plane periodic solutions of tethered satellite system projected on van der Pol planes, Acta Astronautica, 68 (2011), 1024-1030.doi: 10.1016/j.actaastro.2010.09.014.

    [9]

    J. A. Vera, On the periodic solutions of a rigid dumbbell satellite placed at L4 of the restricted three body problem, International Journal of Non-Linear Mechanics, 51 (2013), 152-156.doi: 10.1016/j.ijnonlinmec.2013.01.013.

    [10]

    B. Wong and A. Misra, Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points, Acta Astronautica, 63 (2008), 1178-1187.doi: 10.1016/j.actaastro.2008.06.022.

    [11]

    W. Zhang, F. B. Gao and M. H. Yao, Periodic solutions and stability of a tethered satellite system, Mechanics Research Communications, 44 (2012), 24-29.doi: 10.1016/j.mechrescom.2012.05.004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return