\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems

Abstract / Introduction Related Papers Cited by
  • In this work we introduce and analyse a new adaptive Petrov-Galerkin heterogeneous multiscale finite element method (HMM) for monotone elliptic operators with rapid oscillations. In a general heterogeneous setting we prove convergence of the HMM approximations to the solution of a macroscopic limit equation. The major new contribution of this work is an a-posteriori error estimate for the $L^2$-error between the HMM approximation and the solution of the macroscopic limit equation. The a posteriori error estimate is obtained in a general heterogeneous setting with scale separation without assuming periodicity or stochastic ergodicity. The applicability of the method and the usage of the a posteriori error estimate for adaptive local mesh refinement is demonstrated in numerical experiments. The experimental results underline the applicability of the a posteriori error estimate in non-periodic homogenization settings.
    Mathematics Subject Classification: Primary: 35J60, 65G99, 74Q15; Secondary: 65N30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Abdulle, The finite element heterogeneous multiscale method: A computational strategy for multiscale PDEs, in Multiple scales problems in biomathematics, mechanics, physics and numerics, GAKUTO Internat. Ser. Math. Sci. Appl., 31, Gakkōtosho, Tokyo, 2009, 133-181.

    [2]

    A. Abdulle and A. Nonnenmacher, Adaptive finite element heterogeneous multiscale method for homogenization problems, Comput. Methods Appl. Mech. Engrg., 200 (2011), 2710-2726.doi: 10.1016/j.cma.2010.06.012.

    [3]

    A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems, submitted for publication, 2012.

    [4]

    A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), 18-39.doi: 10.1016/S0021-9991(03)00303-6.

    [5]

    A. Abdulle and A. Nonnenmacher, A posteriori error analysis of the heterogeneous multiscale method for homogenization problems, C. R. Math. Acad. Sci. Paris, 347 (2009), 1081-1086.doi: 10.1016/j.crma.2009.07.004.

    [6]

    A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces, Multiscale Model. Simul., 3 (2004/05), 195-220 (electronic). doi: 10.1137/030600771.

    [7]

    G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084.

    [8]

    H. W. Alt, $^4$ Lineare Funktionalanalysis, Springer, Berlin, 2002.

    [9]

    P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam, 1978.

    [10]

    W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), 87-132.doi: 10.4310/CMS.2003.v1.n1.a8.

    [11]

    W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), 1062-1070.

    [12]

    W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng., 44, Springer, Berlin, 2005, 89-110.doi: 10.1007/3-540-26444-2_4.

    [13]

    W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156 (electronic).doi: 10.1090/S0894-0347-04-00469-2.

    [14]

    Y. Efendiev, T. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications, Commun. Math. Sci., 2 (2004), 553-589.doi: 10.4310/CMS.2004.v2.n4.a2.

    [15]

    Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods. Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences, 4, Springer, New York, 2009.

    [16]

    A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies, Multiscale Model. Simul., 5 (2006), 996-1043 (electronic).doi: 10.1137/060649112.

    [17]

    A. Gloria, An analytical framework for numerical homogenization. {II}. Windowing and oversampling, Multiscale Model. Simul., 7 (2008), 274-293.doi: 10.1137/070683143.

    [18]

    A. Gloria, Reduction of the resonance error-Part 1: Approximation of homogenized coefficients, Math. Models Methods Appl. Sci., 21 (2011), 1601-1630.doi: 10.1142/S0218202511005507.

    [19]

    A. Gloria, Numerical homogenization: Survey, new results, and perspectives, in Mathematical and Numerical Approaches for Multiscale Problem., Esaim. Proc., 37, EDP Sci., Les Ulis, 2012, 50-116.doi: 10.1051/proc/201237002.

    [20]

    P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 22, Masson, Paris, 1992.

    [21]

    P. Henning, M. Ohlberger and B. Schweizer, An adaptive multiscale finite element method, University of Münster, preprint 05/12 - N; Accepted for publication in SIAM MMS, 2012.

    [22]

    P. Henning, Heterogeneous Multiscale Finite Element Methods for Advection-Diffusion and Nonlinear Elliptic Multiscale Problems, Münster: Univ. Münster, Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Mathematik und Informatik (Diss.). ii, 2011, 152 pp.

    [23]

    P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numer. Math., 113 (2009), 601-629.doi: 10.1007/s00211-009-0244-4.

    [24]

    P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift, Netw. Heterog. Media, 5 (2010), 711-744.doi: 10.3934/nhm.2010.5.711.

    [25]

    P. Henning and M. Ohlberger, On the implementation of a heterogeneous multiscale finite element method for nonlinear elliptic problems, in Advances in DUNE. Proceedings of the DUNE User Meeting, held 6.-8.10.2010, in Stuttgart, Germany (eds. R. Klöfkorn A. Dedner and B. Flemisch), Springer, March, 2012, 143-155.

    [26]

    T. J. R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), 387-401.doi: 10.1016/0045-7825(95)00844-9.

    [27]

    T. J. R. Hughes, G. R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), 3-24.doi: 10.1016/S0045-7825(98)00079-6.

    [28]

    M. G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Duality techniques for elliptic problems, in Multiscale Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng., 44, Springer, Berlin, 2005, 181-193.doi: 10.1007/3-540-26444-2_9.

    [29]

    M. G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2313-2324.doi: 10.1016/j.cma.2006.08.019.

    [30]

    M. G. Larson and A. Målqvist, An adaptive variational multiscale method for convection-diffusion problems, Comm. Numer. Methods Engrg., 25 (2009), 65-79.doi: 10.1002/cnm.1106.

    [31]

    J. L. Lions, D. Lukkassen, L. E. Persson and P. Wall, Reiterated homogenization of nonlinear monotone operators, Chinese Ann. Math. Ser. B, 22 (2001), 1-12.doi: 10.1142/S0252959901000024.

    [32]

    D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86.

    [33]

    P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems, Math. Comp., 76 (2007), 153-177 (electronic).doi: 10.1090/S0025-5718-06-01909-0.

    [34]

    J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems, Multiscale Model. Simul., 7 (2008), 171-196.doi: 10.1137/070693230.

    [35]

    J. M. Nordbotten, Variational and heterogeneous multiscale methods for non-linear problems, in Proc. of ENUMATH 2009, Uppsala, Sweden, 2009.

    [36]

    J. T. Oden and K. S. Vemaganti, Adaptive modeling of composite structures: Modeling error estimation, Int. J. Comp. Civil Str. Engrg., 1 (2000), 1-16.

    [37]

    J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys., 164 (2000), 22-47.doi: 10.1006/jcph.2000.6585.

    [38]

    M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88-114 (electronic).doi: 10.1137/040605229.

    [39]

    M. Růžička, Nichtlineare Funktionalanalysis, Springer-Verlag, Berlin Heidelberg New York, 2004.

    [40]

    K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190 (2001), 6089-6124.doi: 10.1016/S0045-7825(01)00217-1.

    [41]

    P. Wall, Some homogenization and corrector results for nonlinear monotone operators, J. Nonlinear Math. Phys., 5 (1998), 331-348.doi: 10.2991/jnmp.1998.5.3.7.

    [42]

    T. I. Zohdi, J. T. Oden and G. J. Rodin, Hierarchical modeling of heterogeneous bodies, Comput. Methods Appl. Mech. Engrg., 138 (1996), 273-298.doi: 10.1016/S0045-7825(96)01106-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return