2015, 8(1): 119-150. doi: 10.3934/dcdss.2015.8.119

Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems

1. 

Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden

2. 

Institut für Numerische und Angewandte Mathematik, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48149 Münster

Received  February 2012 Revised  April 2013 Published  July 2014

In this work we introduce and analyse a new adaptive Petrov-Galerkin heterogeneous multiscale finite element method (HMM) for monotone elliptic operators with rapid oscillations. In a general heterogeneous setting we prove convergence of the HMM approximations to the solution of a macroscopic limit equation. The major new contribution of this work is an a-posteriori error estimate for the $L^2$-error between the HMM approximation and the solution of the macroscopic limit equation. The a posteriori error estimate is obtained in a general heterogeneous setting with scale separation without assuming periodicity or stochastic ergodicity. The applicability of the method and the usage of the a posteriori error estimate for adaptive local mesh refinement is demonstrated in numerical experiments. The experimental results underline the applicability of the a posteriori error estimate in non-periodic homogenization settings.
Citation: Patrick Henning, Mario Ohlberger. Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 119-150. doi: 10.3934/dcdss.2015.8.119
References:
[1]

A. Abdulle, The finite element heterogeneous multiscale method: A computational strategy for multiscale PDEs,, in Multiple scales problems in biomathematics, (2009), 133.

[2]

A. Abdulle and A. Nonnenmacher, Adaptive finite element heterogeneous multiscale method for homogenization problems,, Comput. Methods Appl. Mech. Engrg., 200 (2011), 2710. doi: 10.1016/j.cma.2010.06.012.

[3]

A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems,, submitted for publication, (2012).

[4]

A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems,, J. Comput. Phys., 191 (2003), 18. doi: 10.1016/S0021-9991(03)00303-6.

[5]

A. Abdulle and A. Nonnenmacher, A posteriori error analysis of the heterogeneous multiscale method for homogenization problems,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1081. doi: 10.1016/j.crma.2009.07.004.

[6]

A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces,, Multiscale Model. Simul., 3 (): 195. doi: 10.1137/030600771.

[7]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[8]

H. W. Alt, $^4$ Lineare Funktionalanalysis,, Springer, (2002).

[9]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Studies in Mathematics and its Applications, (1978).

[10]

W. E and B. Engquist, The heterogeneous multiscale methods,, Commun. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8.

[11]

W. E and B. Engquist, Multiscale modeling and computation,, Notices Amer. Math. Soc., 50 (2003), 1062.

[12]

W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems,, in Multiscale Methods in Science and Engineering, (2005), 89. doi: 10.1007/3-540-26444-2_4.

[13]

W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems,, J. Amer. Math. Soc., 18 (2005), 121. doi: 10.1090/S0894-0347-04-00469-2.

[14]

Y. Efendiev, T. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications,, Commun. Math. Sci., 2 (2004), 553. doi: 10.4310/CMS.2004.v2.n4.a2.

[15]

Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods. Theory and Applications,, Surveys and Tutorials in the Applied Mathematical Sciences, (2009).

[16]

A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies,, Multiscale Model. Simul., 5 (2006), 996. doi: 10.1137/060649112.

[17]

A. Gloria, An analytical framework for numerical homogenization. {II}. Windowing and oversampling,, Multiscale Model. Simul., 7 (2008), 274. doi: 10.1137/070683143.

[18]

A. Gloria, Reduction of the resonance error-Part 1: Approximation of homogenized coefficients,, Math. Models Methods Appl. Sci., 21 (2011), 1601. doi: 10.1142/S0218202511005507.

[19]

A. Gloria, Numerical homogenization: Survey, new results, and perspectives,, in Mathematical and Numerical Approaches for Multiscale Problem., (2012), 50. doi: 10.1051/proc/201237002.

[20]

P. Grisvard, Singularities in Boundary Value Problems,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1992).

[21]

P. Henning, M. Ohlberger and B. Schweizer, An adaptive multiscale finite element method,, University of Münster, (2012).

[22]

P. Henning, Heterogeneous Multiscale Finite Element Methods for Advection-Diffusion and Nonlinear Elliptic Multiscale Problems,, Münster: Univ. Münster, (2011).

[23]

P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains,, Numer. Math., 113 (2009), 601. doi: 10.1007/s00211-009-0244-4.

[24]

P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift,, Netw. Heterog. Media, 5 (2010), 711. doi: 10.3934/nhm.2010.5.711.

[25]

P. Henning and M. Ohlberger, On the implementation of a heterogeneous multiscale finite element method for nonlinear elliptic problems,, in Advances in DUNE. Proceedings of the DUNE User Meeting, (2012), 143.

[26]

T. J. R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods,, Comput. Methods Appl. Mech. Engrg., 127 (1995), 387. doi: 10.1016/0045-7825(95)00844-9.

[27]

T. J. R. Hughes, G. R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method-a paradigm for computational mechanics,, Comput. Methods Appl. Mech. Engrg., 166 (1998), 3. doi: 10.1016/S0045-7825(98)00079-6.

[28]

M. G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Duality techniques for elliptic problems,, in Multiscale Methods in Science and Engineering, (2005), 181. doi: 10.1007/3-540-26444-2_9.

[29]

M. G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2313. doi: 10.1016/j.cma.2006.08.019.

[30]

M. G. Larson and A. Målqvist, An adaptive variational multiscale method for convection-diffusion problems,, Comm. Numer. Methods Engrg., 25 (2009), 65. doi: 10.1002/cnm.1106.

[31]

J. L. Lions, D. Lukkassen, L. E. Persson and P. Wall, Reiterated homogenization of nonlinear monotone operators,, Chinese Ann. Math. Ser. B, 22 (2001), 1. doi: 10.1142/S0252959901000024.

[32]

D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence,, Int. J. Pure Appl. Math., 2 (2002), 35.

[33]

P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems,, Math. Comp., 76 (2007), 153. doi: 10.1090/S0025-5718-06-01909-0.

[34]

J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems,, Multiscale Model. Simul., 7 (2008), 171. doi: 10.1137/070693230.

[35]

J. M. Nordbotten, Variational and heterogeneous multiscale methods for non-linear problems,, in Proc. of ENUMATH 2009, (2009).

[36]

J. T. Oden and K. S. Vemaganti, Adaptive modeling of composite structures: Modeling error estimation,, Int. J. Comp. Civil Str. Engrg., 1 (2000), 1.

[37]

J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms,, J. Comput. Phys., 164 (2000), 22. doi: 10.1006/jcph.2000.6585.

[38]

M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems,, Multiscale Model. Simul., 4 (2005), 88. doi: 10.1137/040605229.

[39]

M. Růžička, Nichtlineare Funktionalanalysis,, Springer-Verlag, (2004).

[40]

K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 6089. doi: 10.1016/S0045-7825(01)00217-1.

[41]

P. Wall, Some homogenization and corrector results for nonlinear monotone operators,, J. Nonlinear Math. Phys., 5 (1998), 331. doi: 10.2991/jnmp.1998.5.3.7.

[42]

T. I. Zohdi, J. T. Oden and G. J. Rodin, Hierarchical modeling of heterogeneous bodies,, Comput. Methods Appl. Mech. Engrg., 138 (1996), 273. doi: 10.1016/S0045-7825(96)01106-1.

show all references

References:
[1]

A. Abdulle, The finite element heterogeneous multiscale method: A computational strategy for multiscale PDEs,, in Multiple scales problems in biomathematics, (2009), 133.

[2]

A. Abdulle and A. Nonnenmacher, Adaptive finite element heterogeneous multiscale method for homogenization problems,, Comput. Methods Appl. Mech. Engrg., 200 (2011), 2710. doi: 10.1016/j.cma.2010.06.012.

[3]

A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems,, submitted for publication, (2012).

[4]

A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems,, J. Comput. Phys., 191 (2003), 18. doi: 10.1016/S0021-9991(03)00303-6.

[5]

A. Abdulle and A. Nonnenmacher, A posteriori error analysis of the heterogeneous multiscale method for homogenization problems,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1081. doi: 10.1016/j.crma.2009.07.004.

[6]

A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces,, Multiscale Model. Simul., 3 (): 195. doi: 10.1137/030600771.

[7]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084.

[8]

H. W. Alt, $^4$ Lineare Funktionalanalysis,, Springer, (2002).

[9]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Studies in Mathematics and its Applications, (1978).

[10]

W. E and B. Engquist, The heterogeneous multiscale methods,, Commun. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8.

[11]

W. E and B. Engquist, Multiscale modeling and computation,, Notices Amer. Math. Soc., 50 (2003), 1062.

[12]

W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems,, in Multiscale Methods in Science and Engineering, (2005), 89. doi: 10.1007/3-540-26444-2_4.

[13]

W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems,, J. Amer. Math. Soc., 18 (2005), 121. doi: 10.1090/S0894-0347-04-00469-2.

[14]

Y. Efendiev, T. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications,, Commun. Math. Sci., 2 (2004), 553. doi: 10.4310/CMS.2004.v2.n4.a2.

[15]

Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods. Theory and Applications,, Surveys and Tutorials in the Applied Mathematical Sciences, (2009).

[16]

A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies,, Multiscale Model. Simul., 5 (2006), 996. doi: 10.1137/060649112.

[17]

A. Gloria, An analytical framework for numerical homogenization. {II}. Windowing and oversampling,, Multiscale Model. Simul., 7 (2008), 274. doi: 10.1137/070683143.

[18]

A. Gloria, Reduction of the resonance error-Part 1: Approximation of homogenized coefficients,, Math. Models Methods Appl. Sci., 21 (2011), 1601. doi: 10.1142/S0218202511005507.

[19]

A. Gloria, Numerical homogenization: Survey, new results, and perspectives,, in Mathematical and Numerical Approaches for Multiscale Problem., (2012), 50. doi: 10.1051/proc/201237002.

[20]

P. Grisvard, Singularities in Boundary Value Problems,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1992).

[21]

P. Henning, M. Ohlberger and B. Schweizer, An adaptive multiscale finite element method,, University of Münster, (2012).

[22]

P. Henning, Heterogeneous Multiscale Finite Element Methods for Advection-Diffusion and Nonlinear Elliptic Multiscale Problems,, Münster: Univ. Münster, (2011).

[23]

P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains,, Numer. Math., 113 (2009), 601. doi: 10.1007/s00211-009-0244-4.

[24]

P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift,, Netw. Heterog. Media, 5 (2010), 711. doi: 10.3934/nhm.2010.5.711.

[25]

P. Henning and M. Ohlberger, On the implementation of a heterogeneous multiscale finite element method for nonlinear elliptic problems,, in Advances in DUNE. Proceedings of the DUNE User Meeting, (2012), 143.

[26]

T. J. R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods,, Comput. Methods Appl. Mech. Engrg., 127 (1995), 387. doi: 10.1016/0045-7825(95)00844-9.

[27]

T. J. R. Hughes, G. R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method-a paradigm for computational mechanics,, Comput. Methods Appl. Mech. Engrg., 166 (1998), 3. doi: 10.1016/S0045-7825(98)00079-6.

[28]

M. G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Duality techniques for elliptic problems,, in Multiscale Methods in Science and Engineering, (2005), 181. doi: 10.1007/3-540-26444-2_9.

[29]

M. G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2313. doi: 10.1016/j.cma.2006.08.019.

[30]

M. G. Larson and A. Målqvist, An adaptive variational multiscale method for convection-diffusion problems,, Comm. Numer. Methods Engrg., 25 (2009), 65. doi: 10.1002/cnm.1106.

[31]

J. L. Lions, D. Lukkassen, L. E. Persson and P. Wall, Reiterated homogenization of nonlinear monotone operators,, Chinese Ann. Math. Ser. B, 22 (2001), 1. doi: 10.1142/S0252959901000024.

[32]

D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence,, Int. J. Pure Appl. Math., 2 (2002), 35.

[33]

P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems,, Math. Comp., 76 (2007), 153. doi: 10.1090/S0025-5718-06-01909-0.

[34]

J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems,, Multiscale Model. Simul., 7 (2008), 171. doi: 10.1137/070693230.

[35]

J. M. Nordbotten, Variational and heterogeneous multiscale methods for non-linear problems,, in Proc. of ENUMATH 2009, (2009).

[36]

J. T. Oden and K. S. Vemaganti, Adaptive modeling of composite structures: Modeling error estimation,, Int. J. Comp. Civil Str. Engrg., 1 (2000), 1.

[37]

J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms,, J. Comput. Phys., 164 (2000), 22. doi: 10.1006/jcph.2000.6585.

[38]

M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems,, Multiscale Model. Simul., 4 (2005), 88. doi: 10.1137/040605229.

[39]

M. Růžička, Nichtlineare Funktionalanalysis,, Springer-Verlag, (2004).

[40]

K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 6089. doi: 10.1016/S0045-7825(01)00217-1.

[41]

P. Wall, Some homogenization and corrector results for nonlinear monotone operators,, J. Nonlinear Math. Phys., 5 (1998), 331. doi: 10.2991/jnmp.1998.5.3.7.

[42]

T. I. Zohdi, J. T. Oden and G. J. Rodin, Hierarchical modeling of heterogeneous bodies,, Comput. Methods Appl. Mech. Engrg., 138 (1996), 273. doi: 10.1016/S0045-7825(96)01106-1.

[1]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[2]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[3]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

[4]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[5]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[6]

Lijian Jiang, Yalchin Efendiev, Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 833-859. doi: 10.3934/dcdsb.2007.8.833

[7]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[8]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[9]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[10]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[11]

Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1079-1097. doi: 10.3934/dcds.2014.34.1079

[12]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[13]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[14]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[15]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[16]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[17]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[18]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

[19]

Fredrik Hellman, Patrick Henning, Axel Målqvist. Multiscale mixed finite elements. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1269-1298. doi: 10.3934/dcdss.2016051

[20]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]