2015, 8(6): 1423-1433. doi: 10.3934/dcdss.2015.8.1423

Visualization analysis of traffic congestion based on floating car data

1. 

School of Information Engineering, Chang’an University, Xi’an, Shaanxi 710064, China, China, China, China

Received  May 2015 Revised  September 2015 Published  December 2015

Traffic congestion visualization is an important part in traffic information service. However, the real-time data is difficult to obtain and its analysis method is not accurate, so the reliability of congestion state visualization is low. This paper proposes a visualization analysis algorithm of traffic congestion based on Floating Car Data (FCD), which utilizes the FCD to estimate and display dynamic traffic state on the electronic map. Firstly, an improved map matching method is put forward to match rapidly the FCD with road sections, which includes two steps of coarse and precise matching. Then, the traffic speed is estimated and classified to display different traffic states. Eventually, multi-group experiments have been conducted based on more than 8000 taxies in Xi’an. The experimental results show that FCD can be matched accurately with the selected road sections which accuracy can reach up to \({\rm{96\% }}\), and the estimated traffic real-time state can achieve \({\rm{94\% }}\) in terms of reliability. So this visualization analysis algorithm can display accurately road traffic state in real time.
Citation: Jingmei Zhou, Xiangmo Zhao, Xin Cheng, Zhigang Xu. Visualization analysis of traffic congestion based on floating car data. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1423-1433. doi: 10.3934/dcdss.2015.8.1423
References:
[1]

M. Bierlaire, J. Chen and J. Newman, A probabilistic map matching method for smartphone GPS data,, Transportation Research Part C Emerging Technologies, 26 (2013), 78. doi: 10.1016/j.trc.2012.08.001.

[2]

M. Y. Cao and D. Y. Yu, Pseudocolor coding of gray image based on perceptual color space,, Optical Technology, 28 (2002), 338.

[3]

B. Y. Chen, H. Yuan and Q. Lam, Map-matching algorithm for large-scale low-frequency floating car data,, International Journal of Geographical Information Science, 28 (2014), 22. doi: 10.1080/13658816.2013.816427.

[4]

F. Chen, M. Shen and Y. Tang, Local path searching based map matching algorithm for floating car data,, Procedia Environmental Sciences, 10 (2011), 576. doi: 10.1016/j.proenv.2011.09.093.

[5]

J. S. Greenfeld, Matching GPS observations to locations on a digital map,, in Proceedings of Annual Meeting of the Transportation Research Board Washington D C., (2002).

[6]

J. Guo, W. Huang and B. M. Williams, Real time traffic flow outlier detection using short-term traffic conditional variance prediction,, Transportation Research Part C Emerging Technologies, 50 (2015), 160. doi: 10.1016/j.trc.2014.07.005.

[7]

J. Hu, X. Peng and Z. Xu, Study of gray image pseudo-color processing algorithms,, in Proc. SPIE 8415 International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, (8415). doi: 10.1117/12.977197.

[8]

G. Y. Jiang, A. D. Chang and Q. Li, Estimation models for average speed of traffic flow based on GPS data of taxi,, Journal of Southwest Jiaotong University, 46 (2011), 638.

[9]

Y. Lou, C. Zhang and Y. Zheng, et al., Map-matching for low-sampling-rate GPS trajectories,, ACM SIGSPATIAL GIS 2009, (2009), 352. doi: 10.1145/1653771.1653820.

[10]

S. Messelodi, M. C. Modena and M. Zanin, Intelligent extended floating car data collection,, Expert Systems with Applications, 36 (2009), 4213. doi: 10.1016/j.eswa.2008.04.008.

[11]

T. Miwa, D. Kiuchi and T. Yamamoto, Development of map matching algorithm for low frequency probe data,, Transportation Research Part C Emerging Technologies, 22 (2012), 132. doi: 10.1016/j.trc.2012.01.005.

[12]

M. A. Quddus, W. Y. Ochieng and L. Zhao, A general map matching algorithm for transport telematics applications,, GPS Solutions, 7 (2003), 157. doi: 10.1007/s10291-003-0069-z.

[13]

N. R. Velaga and A. L. Bristow, Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems,, Transportation Research Part C Emerging Technologies, 17 (2009), 672. doi: 10.1016/j.trc.2009.05.008.

[14]

H. Yang, S. Cheng and H. Jiang, An enhanced weight-based topological map matching algorithm for intricate urban road network,, Procedia Social and Behavioral Sciences, 96 (2013), 1670. doi: 10.1016/j.sbspro.2013.08.189.

[15]

J. S. Yang, S. P. Kang and K. S. Chon, The map matching algorithm of GPS data with relatively long polling time intervals,, Journal of the Eastern Asia Society for Transportation Studies, 6 (2005), 2561.

[16]

Q. Yuan, Z. Liu and J. Li, A traffic congestion detection and information dissemination scheme for urban expressways using vehicular networks,, Transportation Research Part C Emerging Technologies, 47 (2014), 114. doi: 10.1016/j.trc.2014.08.001.

[17]

Y. C. Zhang, X. Q. Zuo and L. T. Zhang, Traffic congestion detection based on GPS floating-car data,, Procedia Engineering, 15 (2011), 5541.

[18]

Y. Zheng and M. A. Cheng, Weight-based shortest-path aided map matching algorithm for low-frequency positioning data,, Transportation Research Board Meeting, (2011).

[19]

S. Zhong, X. Y. Jiang and Z. Wei, Pseudo-Color Coding with phase modulated image density,, in International Conference on Micro/Nano Optical Engineering (ICOME), (2011).

show all references

References:
[1]

M. Bierlaire, J. Chen and J. Newman, A probabilistic map matching method for smartphone GPS data,, Transportation Research Part C Emerging Technologies, 26 (2013), 78. doi: 10.1016/j.trc.2012.08.001.

[2]

M. Y. Cao and D. Y. Yu, Pseudocolor coding of gray image based on perceptual color space,, Optical Technology, 28 (2002), 338.

[3]

B. Y. Chen, H. Yuan and Q. Lam, Map-matching algorithm for large-scale low-frequency floating car data,, International Journal of Geographical Information Science, 28 (2014), 22. doi: 10.1080/13658816.2013.816427.

[4]

F. Chen, M. Shen and Y. Tang, Local path searching based map matching algorithm for floating car data,, Procedia Environmental Sciences, 10 (2011), 576. doi: 10.1016/j.proenv.2011.09.093.

[5]

J. S. Greenfeld, Matching GPS observations to locations on a digital map,, in Proceedings of Annual Meeting of the Transportation Research Board Washington D C., (2002).

[6]

J. Guo, W. Huang and B. M. Williams, Real time traffic flow outlier detection using short-term traffic conditional variance prediction,, Transportation Research Part C Emerging Technologies, 50 (2015), 160. doi: 10.1016/j.trc.2014.07.005.

[7]

J. Hu, X. Peng and Z. Xu, Study of gray image pseudo-color processing algorithms,, in Proc. SPIE 8415 International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, (8415). doi: 10.1117/12.977197.

[8]

G. Y. Jiang, A. D. Chang and Q. Li, Estimation models for average speed of traffic flow based on GPS data of taxi,, Journal of Southwest Jiaotong University, 46 (2011), 638.

[9]

Y. Lou, C. Zhang and Y. Zheng, et al., Map-matching for low-sampling-rate GPS trajectories,, ACM SIGSPATIAL GIS 2009, (2009), 352. doi: 10.1145/1653771.1653820.

[10]

S. Messelodi, M. C. Modena and M. Zanin, Intelligent extended floating car data collection,, Expert Systems with Applications, 36 (2009), 4213. doi: 10.1016/j.eswa.2008.04.008.

[11]

T. Miwa, D. Kiuchi and T. Yamamoto, Development of map matching algorithm for low frequency probe data,, Transportation Research Part C Emerging Technologies, 22 (2012), 132. doi: 10.1016/j.trc.2012.01.005.

[12]

M. A. Quddus, W. Y. Ochieng and L. Zhao, A general map matching algorithm for transport telematics applications,, GPS Solutions, 7 (2003), 157. doi: 10.1007/s10291-003-0069-z.

[13]

N. R. Velaga and A. L. Bristow, Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems,, Transportation Research Part C Emerging Technologies, 17 (2009), 672. doi: 10.1016/j.trc.2009.05.008.

[14]

H. Yang, S. Cheng and H. Jiang, An enhanced weight-based topological map matching algorithm for intricate urban road network,, Procedia Social and Behavioral Sciences, 96 (2013), 1670. doi: 10.1016/j.sbspro.2013.08.189.

[15]

J. S. Yang, S. P. Kang and K. S. Chon, The map matching algorithm of GPS data with relatively long polling time intervals,, Journal of the Eastern Asia Society for Transportation Studies, 6 (2005), 2561.

[16]

Q. Yuan, Z. Liu and J. Li, A traffic congestion detection and information dissemination scheme for urban expressways using vehicular networks,, Transportation Research Part C Emerging Technologies, 47 (2014), 114. doi: 10.1016/j.trc.2014.08.001.

[17]

Y. C. Zhang, X. Q. Zuo and L. T. Zhang, Traffic congestion detection based on GPS floating-car data,, Procedia Engineering, 15 (2011), 5541.

[18]

Y. Zheng and M. A. Cheng, Weight-based shortest-path aided map matching algorithm for low-frequency positioning data,, Transportation Research Board Meeting, (2011).

[19]

S. Zhong, X. Y. Jiang and Z. Wei, Pseudo-Color Coding with phase modulated image density,, in International Conference on Micro/Nano Optical Engineering (ICOME), (2011).

[1]

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks & Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605

[2]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[3]

Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang. Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks & Heterogeneous Media, 2013, 8 (3) : i-ii. doi: 10.3934/nhm.2013.8.3i

[4]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[5]

Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025

[6]

Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks & Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773

[7]

Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks & Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127

[8]

Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi. Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks & Heterogeneous Media, 2013, 8 (3) : 825-842. doi: 10.3934/nhm.2013.8.825

[9]

Krzysztof Fujarewicz, Krzysztof Łakomiec. Parameter estimation of systems with delays via structural sensitivity analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2521-2533. doi: 10.3934/dcdsb.2014.19.2521

[10]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[11]

Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243

[12]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[13]

James H. Elder. A new training program in data analytics & visualization. Big Data & Information Analytics, 2016, 1 (1) : i-iii. doi: 10.3934/bdia.2016.1.1i

[14]

Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio. Congestion-driven dendritic growth. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1575-1604. doi: 10.3934/dcds.2014.34.1575

[15]

Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling. Networks & Heterogeneous Media, 2011, 6 (3) : 485-519. doi: 10.3934/nhm.2011.6.485

[16]

Zsolt Saffer, Miklós Telek. Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network. Journal of Industrial & Management Optimization, 2011, 7 (3) : 677-697. doi: 10.3934/jimo.2011.7.677

[17]

J. M. Mazón, Julio D. Rossi, J. Toledo. Optimal matching problems with costs given by Finsler distances. Communications on Pure & Applied Analysis, 2015, 14 (1) : 229-244. doi: 10.3934/cpaa.2015.14.229

[18]

Danilo Coelho, David Pérez-Castrillo. On Marilda Sotomayor's extraordinary contribution to matching theory. Journal of Dynamics & Games, 2015, 2 (3&4) : 201-206. doi: 10.3934/jdg.2015001

[19]

Kamil Rajdl, Petr Lansky. Fano factor estimation. Mathematical Biosciences & Engineering, 2014, 11 (1) : 105-123. doi: 10.3934/mbe.2014.11.105

[20]

Xiaojiao Tong, Felix F. Wu, Jifeng Su. Quadratic approximation and visualization of online contract-based available transfer capability region of power systems. Journal of Industrial & Management Optimization, 2008, 4 (3) : 553-563. doi: 10.3934/jimo.2008.4.553

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]