2015, 8(5): 817-832. doi: 10.3934/dcdss.2015.8.817

A local discontinuous Galerkin method based on variational structure

1. 

Department of Mathematical Informatics, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan, Japan, Japan

Received  December 2013 Revised  June 2014 Published  July 2015

We present a special variant of the local discontinuous Galerkin (LDG) method for time-dependent partial differential equations with certain variational structures and associated conservation or dissipation properties. The method provides a way to construct fully-discrete LDG schemes that retain discrete counterparts of the conservation or dissipation properties. Numerical results confirm the accuracy and effectiveness of the method.
Citation: Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817
References:
[1]

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations,, J. Comput. Phys., 131 (1997), 267. doi: 10.1006/jcph.1996.5572.

[2]

J. L. Bona, H. Chen, O. Karakashian and Y. Xing, Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation,, Math. Comput., 82 (2013), 1401. doi: 10.1090/S0025-5718-2013-02661-0.

[3]

G. F. Carey and Y. Shen, Approximations of the KdV equation by least squares finite elements,, Comput. Methods Appl. Mech. Engrg., 93 (1991), 1. doi: 10.1016/0045-7825(91)90112-J.

[4]

B. Cockburn, G. E. Karniadakis and C. W. Shu, Discontinuous Galerkin methods, Theory, Computation and Applications,, volume 11 of Springer Lecture Notes in Computational Science and Engineering. Springer-Verlag, (2000). doi: 10.1007/978-3-642-59721-3.

[5]

B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for timedependent convection-diffusion systems,, SIAM J. Numer. Anal., 35 (1998), 2440. doi: 10.1137/S0036142997316712.

[6]

A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation,, Physica D, 134 (1999), 200. doi: 10.1016/S0167-2789(99)00072-X.

[7]

D. Furihata, Finite difference schemes for $\frac{\partial u}{\partial t}=(\frac{\partial}{\partial x})^\alpha\frac{\delta G}{\delta u}$ that inherit energy conservation or dissipation property,, J. Comput. Phys., 156 (1999), 181. doi: 10.1006/jcph.1999.6377.

[8]

D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations,, Chapman & Hall/CRC, (2011).

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2nd ed.),, Springer-Verlag, (2006).

[10]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Sci., 6 (1996), 449. doi: 10.1007/BF02440162.

[11]

T. Matsuo, Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations,, J. Comput. Appl. Math., 218 (2008), 506. doi: 10.1016/j.cam.2007.08.001.

[12]

Y. Miyatake and T. Matsuo, A general framework for finding energy dissipative/conservative $H^1$-Galerkin schemes and their underlying $H^1$-weak forms for nonlinear evolution equations,, BIT., 54 (2014), 1119. doi: 10.1007/s10543-014-0483-3.

[13]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/4/045206.

[14]

W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation,, Technical report, (1973).

[15]

Y. Xia, Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard type equations,, J. Comput. Phys., 227 (2007), 472. doi: 10.1016/j.jcp.2007.08.001.

[16]

Y. Xing, C. S. Chou and C. W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems,, Inverse Problem and Imaging, 7 (2013), 967. doi: 10.3934/ipi.2013.7.967.

[17]

Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations,, J. Comput. Phys., 205 (2005), 72. doi: 10.1016/j.jcp.2004.11.001.

[18]

Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation,, SIAM J. Numer. Anal., 46 (2008), 1998. doi: 10.1137/070679764.

[19]

T. Yaguchi, T. Matsuo and M. Sugihara, An extension of the discrete variational method to nonuniform grids,, J. Comput. Phys., 229 (2010), 4382. doi: 10.1016/j.jcp.2010.02.018.

[20]

J. Yan and C. W. Shu, A local discontinuous Galerkin method for KdV type equations,, SIAM J. Numer. Anal., 40 (2002), 769. doi: 10.1137/S0036142901390378.

[21]

N. Yi, Y. Huang and H. Liu, A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect,, J. Comput. Phys., 242 (2013), 351. doi: 10.1016/j.jcp.2013.01.031.

show all references

References:
[1]

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations,, J. Comput. Phys., 131 (1997), 267. doi: 10.1006/jcph.1996.5572.

[2]

J. L. Bona, H. Chen, O. Karakashian and Y. Xing, Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation,, Math. Comput., 82 (2013), 1401. doi: 10.1090/S0025-5718-2013-02661-0.

[3]

G. F. Carey and Y. Shen, Approximations of the KdV equation by least squares finite elements,, Comput. Methods Appl. Mech. Engrg., 93 (1991), 1. doi: 10.1016/0045-7825(91)90112-J.

[4]

B. Cockburn, G. E. Karniadakis and C. W. Shu, Discontinuous Galerkin methods, Theory, Computation and Applications,, volume 11 of Springer Lecture Notes in Computational Science and Engineering. Springer-Verlag, (2000). doi: 10.1007/978-3-642-59721-3.

[5]

B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for timedependent convection-diffusion systems,, SIAM J. Numer. Anal., 35 (1998), 2440. doi: 10.1137/S0036142997316712.

[6]

A. Debussche and J. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation,, Physica D, 134 (1999), 200. doi: 10.1016/S0167-2789(99)00072-X.

[7]

D. Furihata, Finite difference schemes for $\frac{\partial u}{\partial t}=(\frac{\partial}{\partial x})^\alpha\frac{\delta G}{\delta u}$ that inherit energy conservation or dissipation property,, J. Comput. Phys., 156 (1999), 181. doi: 10.1006/jcph.1999.6377.

[8]

D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations,, Chapman & Hall/CRC, (2011).

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2nd ed.),, Springer-Verlag, (2006).

[10]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Sci., 6 (1996), 449. doi: 10.1007/BF02440162.

[11]

T. Matsuo, Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations,, J. Comput. Appl. Math., 218 (2008), 506. doi: 10.1016/j.cam.2007.08.001.

[12]

Y. Miyatake and T. Matsuo, A general framework for finding energy dissipative/conservative $H^1$-Galerkin schemes and their underlying $H^1$-weak forms for nonlinear evolution equations,, BIT., 54 (2014), 1119. doi: 10.1007/s10543-014-0483-3.

[13]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/4/045206.

[14]

W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation,, Technical report, (1973).

[15]

Y. Xia, Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard type equations,, J. Comput. Phys., 227 (2007), 472. doi: 10.1016/j.jcp.2007.08.001.

[16]

Y. Xing, C. S. Chou and C. W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems,, Inverse Problem and Imaging, 7 (2013), 967. doi: 10.3934/ipi.2013.7.967.

[17]

Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations,, J. Comput. Phys., 205 (2005), 72. doi: 10.1016/j.jcp.2004.11.001.

[18]

Y. Xu and C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation,, SIAM J. Numer. Anal., 46 (2008), 1998. doi: 10.1137/070679764.

[19]

T. Yaguchi, T. Matsuo and M. Sugihara, An extension of the discrete variational method to nonuniform grids,, J. Comput. Phys., 229 (2010), 4382. doi: 10.1016/j.jcp.2010.02.018.

[20]

J. Yan and C. W. Shu, A local discontinuous Galerkin method for KdV type equations,, SIAM J. Numer. Anal., 40 (2002), 769. doi: 10.1137/S0036142901390378.

[21]

N. Yi, Y. Huang and H. Liu, A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: Energy conservation and boundary effect,, J. Comput. Phys., 242 (2013), 351. doi: 10.1016/j.jcp.2013.01.031.

[1]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[2]

Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic & Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373

[3]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2017216

[4]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[5]

Hassan Najafi Alishah, Pedro Duarte, Telmo Peixe. Conservative and dissipative polymatrix replicators. Journal of Dynamics & Games, 2015, 2 (2) : 157-185. doi: 10.3934/jdg.2015.2.157

[6]

Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602

[7]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[8]

Lunji Song, Zhimin Zhang. Polynomial preserving recovery of an over-penalized symmetric interior penalty Galerkin method for elliptic problems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1405-1426. doi: 10.3934/dcdsb.2015.20.1405

[9]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[10]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[11]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[12]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-36. doi: 10.3934/dcdsb.2018104

[13]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[14]

Dan Xue, Wenyu Sun, Hongjin He. A structured trust region method for nonconvex programming with separable structure. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 283-293. doi: 10.3934/naco.2013.3.283

[15]

Svend Christensen, Preben Klarskov Hansen, Guozheng Qi, Jihuai Wang. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 777-788. doi: 10.3934/dcdsb.2004.4.777

[16]

Jann-Long Chern, Zhi-You Chen, Yong-Li Tang. Structure of solutions to a singular Liouville system arising from modeling dissipative stationary plasmas. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2299-2318. doi: 10.3934/dcds.2013.33.2299

[17]

Baiyu Liu, Li Ma. Blow up threshold for a parabolic type equation involving space integral and variational structure. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2169-2183. doi: 10.3934/cpaa.2015.14.2169

[18]

C.B. Muratov. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 867-892. doi: 10.3934/dcdsb.2004.4.867

[19]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[20]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

[Back to Top]