-
Previous Article
Multiphase volume-preserving interface motions via localized signed distance vector scheme
- DCDS-S Home
- This Issue
-
Next Article
A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model)
Behavior of radially symmetric solutions for a free boundary problem related to cell motility
1. | Meiji Institute of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo, 164-8525 |
References:
[1] |
G. M. Lieberman, Second Order Parabolic Differential Equations,, World. Scientific, (1996).
doi: 10.1142/3302. |
[2] |
A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod,, Bio. J., 97 (2009), 1853. |
[3] |
A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models,, Biophys J., 101 (2011), 545. |
[4] |
A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell,, J. Stat. Phys., 110 (2003), 1169. |
[5] |
H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion,, Differential and Integral Equations, 25 (2012), 93.
|
[6] |
H. Monobe and N. Hirokazu, Multiple existence of traveling waves of a free boundary problem describing cell motility,, Discrete Contin. Dyn. Syst., 19 (2014), 789.
doi: 10.3934/dcdsb.2014.19.789. |
[7] |
T. Umeda, A chemo-mechanical model for amoeboid cell movement,, (in preparation)., (). |
show all references
References:
[1] |
G. M. Lieberman, Second Order Parabolic Differential Equations,, World. Scientific, (1996).
doi: 10.1142/3302. |
[2] |
A. Mogilner and B. Rubinstein et al, Actin-myosin viscoelastic flow in the keratocyte lamellipod,, Bio. J., 97 (2009), 1853. |
[3] |
A. Mogilner, J. Stajic and C. W. Wolgemuth, Redundant mechanisms for stable cell locomotion revealed by minimal models,, Biophys J., 101 (2011), 545. |
[4] |
A. Mogilner and D. W. Verzi, A simple 1-D physical model for the crawling nematode sperm cell,, J. Stat. Phys., 110 (2003), 1169. |
[5] |
H. Monobe, Behavior of solutions for a free boundary problem describing amoeba motion,, Differential and Integral Equations, 25 (2012), 93.
|
[6] |
H. Monobe and N. Hirokazu, Multiple existence of traveling waves of a free boundary problem describing cell motility,, Discrete Contin. Dyn. Syst., 19 (2014), 789.
doi: 10.3934/dcdsb.2014.19.789. |
[7] |
T. Umeda, A chemo-mechanical model for amoeboid cell movement,, (in preparation)., (). |
[1] |
Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 |
[2] |
Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789 |
[3] |
Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006 |
[4] |
Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386 |
[5] |
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 |
[6] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673 |
[7] |
Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365 |
[8] |
Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799 |
[9] |
Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017 |
[10] |
Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920 |
[11] |
Pierangelo Ciurlia. On a general class of free boundary problems for European-style installment options with continuous payment plan. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1205-1224. doi: 10.3934/cpaa.2011.10.1205 |
[12] |
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025 |
[13] |
Joachim Escher, Christina Lienstromberg. A survey on second order free boundary value problems modelling MEMS with general permittivity profile. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 745-771. doi: 10.3934/dcdss.2017038 |
[14] |
Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431 |
[15] |
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307 |
[16] |
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 |
[17] |
Borys V. Bazaliy, Ya. B. Bazaliy, Avner Friedman, Bei Hu. Energy Considerations in a Model of Nematode Sperm Crawling. Mathematical Biosciences & Engineering, 2006, 3 (2) : 347-370. doi: 10.3934/mbe.2006.3.347 |
[18] |
Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013 |
[19] |
Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763 |
[20] |
Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 |
2016 Impact Factor: 0.781
Tools
Metrics
Other articles
by authors
[Back to Top]