October  2016, 9(5): 1327-1349. doi: 10.3934/dcdss.2016053

Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior

1. 

INRIA-Rennes, IRMAR and ENS Bruz, Campus de Beaulieu, 35042 Rennes Cedex, France

2. 

Wolfgang Pauli Institute c/o Fak. Mathematik, University Wien, Nordbergstrasse 15, 1090 Vienna, Austria

3. 

IRMAR, Université de Rennes 1 and INRIA-Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France, France

Received  October 2014 Revised  July 2015 Published  October 2016

In this paper, we present the Stroboscopic Averaging Method (SAM), recently introduced in [7,8,10,13], which aims at numerically solving highly-oscillatory differential equations. More specifically, we first apply SAM to the Schrödinger equation on the $1$-dimensional torus and on the real line with harmonic potential, with the aim of assessing its efficiency: as compared to the well-established standard splitting schemes, the stiffer the problem is, the larger the speed-up grows (up to a factor $100$ in our tests). The geometric properties of SAM are also explored: on very long time intervals, symmetric implementations of the method show a very good preservation of the mass invariant and of the energy. In a second series of experiments on $2$-dimensional equations, we demonstrate the ability of SAM to capture qualitatively the long-time evolution of the solution (without spurring high oscillations).
Citation: Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053
References:
[1]

W. Bao, S. Jin and P. A. Markowich, On Time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime,, J. Comput. Phys., 175 (2002), 487. doi: 10.1006/jcph.2001.6956. Google Scholar

[2]

W. Bao, S. Jin and P. A. Markowich, Numerical studies of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regime,, SIAM J. Sci. Comput., 25 (2003), 27. doi: 10.1137/S1064827501393253. Google Scholar

[3]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2010. doi: 10.1137/030601211. Google Scholar

[4]

N. Ben Abdallah, Y. Y. Cai, F. Castella and F. Méhats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinetic and Related Models, 4 (2011), 831. doi: 10.3934/krm.2011.4.831. Google Scholar

[5]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differ. Equations, 245 (2008), 154. doi: 10.1016/j.jde.2008.02.002. Google Scholar

[6]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus and expansion and some of its applications,, Physics Reports, 470 (2009), 151. doi: 10.1016/j.physrep.2008.11.001. Google Scholar

[7]

M. P. Calvo, P. Chartier, A. Murua and J. M. Sanz-Serna, A stroboscopic numerical method for highly oscillatory problems,, in Numerical Analysis and Multiscale Computations, 82 (2012), 71. doi: 10.1007/978-3-642-21943-6_4. Google Scholar

[8]

M. P. Calvo, P. Chartier, A. Murua and J.-M. Sanz-Serna, Numerical stroboscopic averaging for ODEs and DAEs,, Appl. Numer. Math., 61 (2011), 1077. doi: 10.1016/j.apnum.2011.06.007. Google Scholar

[9]

R. Carles and E. Faou, Energy cascades for NLS on the torus,, Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 32 (2012), 2063. doi: 10.3934/dcds.2012.32.2063. Google Scholar

[10]

F. Castella, P. Chartier, F. Méhats and A. Murua, Stroboscopic averaging for the nonlinear Schrödinger equations,, Foundations of Computational Mathematics, 15 (2015), 519. doi: 10.1007/s10208-014-9235-7. Google Scholar

[11]

P. Chartier, F. Méhats, M. Thalhammer and Y. Zhang, A note on the convergence of splitting methods for periodic highly-oscillatory systems,, preprint., (). Google Scholar

[12]

P. Chartier, A. Murua and J. M. Sanz-Serna, A formal series approach to averaging: Exponentially small error estimates,, Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 32 (2012), 3009. doi: 10.3934/dcds.2012.32.3009. Google Scholar

[13]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration I: B-series,, Found Comput Math, 10 (2010), 695. doi: 10.1007/s10208-010-9074-0. Google Scholar

[14]

W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations,, Comm. Math. Sci., 1 (2003), 423. doi: 10.4310/CMS.2003.v1.n3.a3. Google Scholar

[15]

W. E and B. Engquist, The heterogeneous multiscale methods,, Comm. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[16]

W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review,, Commun. Comput. Phys., 2 (2007), 367. Google Scholar

[17]

B. Engquist and R. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations,, Math. Comput., 74 (2005), 1707. doi: 10.1090/S0025-5718-05-01745-X. Google Scholar

[18]

B. Grébert and C. Villegas-Blas, On the energy exchange between resonant modes in nonlinear Schrödinger equations,, Ann. I. H. Poincaré, 28 (2011), 127. doi: 10.1016/j.anihpc.2010.11.004. Google Scholar

[19]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,, Springer, (2006). Google Scholar

[20]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase,, J. Appl. Math. Mech., 48 (1984), 133. doi: 10.1016/0021-8928(84)90078-9. Google Scholar

[21]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems,, Springer, (2007). Google Scholar

[22]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications,, Springer, (2011). doi: 10.1007/978-3-540-71041-7. Google Scholar

[23]

G. Strang, On the construction and comparision of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506. doi: 10.1137/0705041. Google Scholar

[24]

M. Thalhammer, M. Caliari and C. Neuhauser, High-order time-splitting Hermite and Fourier spectral methods,, J. Comput. Phys., 228 (2009), 822. doi: 10.1016/j.jcp.2008.10.008. Google Scholar

[25]

H. Yoshida, Construction of higher order symplectic integrators,, Phys. Lett. A, 150 (1990), 262. doi: 10.1016/0375-9601(90)90092-3. Google Scholar

[26]

Y. Zhang and X. Dong, On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system,, J. Comput. Phys., 230 (2011), 2660. doi: 10.1016/j.jcp.2010.12.045. Google Scholar

show all references

References:
[1]

W. Bao, S. Jin and P. A. Markowich, On Time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime,, J. Comput. Phys., 175 (2002), 487. doi: 10.1006/jcph.2001.6956. Google Scholar

[2]

W. Bao, S. Jin and P. A. Markowich, Numerical studies of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regime,, SIAM J. Sci. Comput., 25 (2003), 27. doi: 10.1137/S1064827501393253. Google Scholar

[3]

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates,, SIAM J. Sci. Comput., 26 (2005), 2010. doi: 10.1137/030601211. Google Scholar

[4]

N. Ben Abdallah, Y. Y. Cai, F. Castella and F. Méhats, Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential,, Kinetic and Related Models, 4 (2011), 831. doi: 10.3934/krm.2011.4.831. Google Scholar

[5]

N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity,, J. Differ. Equations, 245 (2008), 154. doi: 10.1016/j.jde.2008.02.002. Google Scholar

[6]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus and expansion and some of its applications,, Physics Reports, 470 (2009), 151. doi: 10.1016/j.physrep.2008.11.001. Google Scholar

[7]

M. P. Calvo, P. Chartier, A. Murua and J. M. Sanz-Serna, A stroboscopic numerical method for highly oscillatory problems,, in Numerical Analysis and Multiscale Computations, 82 (2012), 71. doi: 10.1007/978-3-642-21943-6_4. Google Scholar

[8]

M. P. Calvo, P. Chartier, A. Murua and J.-M. Sanz-Serna, Numerical stroboscopic averaging for ODEs and DAEs,, Appl. Numer. Math., 61 (2011), 1077. doi: 10.1016/j.apnum.2011.06.007. Google Scholar

[9]

R. Carles and E. Faou, Energy cascades for NLS on the torus,, Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 32 (2012), 2063. doi: 10.3934/dcds.2012.32.2063. Google Scholar

[10]

F. Castella, P. Chartier, F. Méhats and A. Murua, Stroboscopic averaging for the nonlinear Schrödinger equations,, Foundations of Computational Mathematics, 15 (2015), 519. doi: 10.1007/s10208-014-9235-7. Google Scholar

[11]

P. Chartier, F. Méhats, M. Thalhammer and Y. Zhang, A note on the convergence of splitting methods for periodic highly-oscillatory systems,, preprint., (). Google Scholar

[12]

P. Chartier, A. Murua and J. M. Sanz-Serna, A formal series approach to averaging: Exponentially small error estimates,, Discrete and Continuous Dynamical Systems-Series A (DCDS-A), 32 (2012), 3009. doi: 10.3934/dcds.2012.32.3009. Google Scholar

[13]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration I: B-series,, Found Comput Math, 10 (2010), 695. doi: 10.1007/s10208-010-9074-0. Google Scholar

[14]

W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations,, Comm. Math. Sci., 1 (2003), 423. doi: 10.4310/CMS.2003.v1.n3.a3. Google Scholar

[15]

W. E and B. Engquist, The heterogeneous multiscale methods,, Comm. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[16]

W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review,, Commun. Comput. Phys., 2 (2007), 367. Google Scholar

[17]

B. Engquist and R. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations,, Math. Comput., 74 (2005), 1707. doi: 10.1090/S0025-5718-05-01745-X. Google Scholar

[18]

B. Grébert and C. Villegas-Blas, On the energy exchange between resonant modes in nonlinear Schrödinger equations,, Ann. I. H. Poincaré, 28 (2011), 127. doi: 10.1016/j.anihpc.2010.11.004. Google Scholar

[19]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,, Springer, (2006). Google Scholar

[20]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase,, J. Appl. Math. Mech., 48 (1984), 133. doi: 10.1016/0021-8928(84)90078-9. Google Scholar

[21]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems,, Springer, (2007). Google Scholar

[22]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications,, Springer, (2011). doi: 10.1007/978-3-540-71041-7. Google Scholar

[23]

G. Strang, On the construction and comparision of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506. doi: 10.1137/0705041. Google Scholar

[24]

M. Thalhammer, M. Caliari and C. Neuhauser, High-order time-splitting Hermite and Fourier spectral methods,, J. Comput. Phys., 228 (2009), 822. doi: 10.1016/j.jcp.2008.10.008. Google Scholar

[25]

H. Yoshida, Construction of higher order symplectic integrators,, Phys. Lett. A, 150 (1990), 262. doi: 10.1016/0375-9601(90)90092-3. Google Scholar

[26]

Y. Zhang and X. Dong, On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system,, J. Comput. Phys., 230 (2011), 2660. doi: 10.1016/j.jcp.2010.12.045. Google Scholar

[1]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[2]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[3]

Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555

[4]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[5]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[6]

Peng Gao, Yong Li. Averaging principle for the Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089

[7]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[8]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[9]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[10]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[11]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[12]

Partha Guha, Indranil Mukherjee. Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1677-1695. doi: 10.3934/dcdsb.2018287

[13]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[14]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[15]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[16]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[17]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[18]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[19]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[20]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

[Back to Top]