Citation: |
[1] |
M. Chipot and F. B. Weissler, Some blow up results for a nonlinear parabolic problem with a gradient term, SIAM J. Math. Anal, 20 (1987), 886-907.doi: 10.1137/0520060. |
[2] |
M. Chlebik, M. Fila and P. Quittner, Blow-up of positive solutions of a semilinear parabolic equation with a gradient term, Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal., 10 (2003), 525-537. |
[3] |
A. Friedman, Blow up solutions of nonlinear parabolic equations, W, M. Ni, L. A. Peletier, J. Serrin (Eds. ), nonlinear diffusion equations and their equilibrium states, Birkhaser Verlag, Basel, 12 (1988), 301-318.doi: 10.1007/978-1-4613-9605-5_19. |
[4] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. tokyo Sect. IA Math, 13 (1966), 109-124. |
[5] |
H. Hani and M. Khenissi, On a finite difference scheme for blow up solutions for the Chipot-Weissler equation, Applied Mathematics and Computation, 268 (2015), 1199-1216.doi: 10.1016/j.amc.2015.07.029. |
[6] |
K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad. Ser. A Math, 49 (1973), 503-505.doi: 10.3792/pja/1195519254. |
[7] |
H. A. Levine, The role of critical exponents in blow up theorems, SIAM Rev, 32 (1990), 262-288.doi: 10.1137/1032046. |
[8] |
P. Souplet, Finite time blow up for a nonlinear parabolic equation with a gradient term and applications, Math. Methods Appl. sci, 19 (1996), 1317-1333.doi: 10.1002/(SICI)1099-1476(19961110)19:16<1317::AID-MMA835>3.0.CO;2-M. |
[9] |
P. Souplet and F. B. Weissler, Self-similar subsolutions and blow up for nonlinear parabolic equations, Nonlinear Analysis, Theory Methods and Applications, 30 (1997), 4637-4641.doi: 10.1016/S0362-546X(97)00258-7. |