\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Equipartition of energy for nonautonomous wave equations

The third author is supported by CAPES -Brazil grant 12220-13-2

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Consider wave equations of the form

    with $A$ an injective selfadjoint operator on a complex Hilbert space $\mathcal{H}$. The kinetic, potential, and total energies of a solution $u$ are

    $\begin{align*}K(t)= \| u'(t)\|^2, P(t)= \|Au(t)\|^2, E(t) = K(t)+P(t).\end{align*}$

    Finite energy solutions are those mild solutions for which $E(t)$ is finite. For such solutions $E(t)= E(0)$, that is, energy is conserved, and asymptotic equipartition of energy

    $\begin{align*}\lim_{t \longrightarrow ± ∞}K(t) = \lim_{t \longrightarrow ± ∞}P(t) = \frac{E(0)}{2}\end{align*}$

    holds for all finite energy mild solutions iff $e^{itA}\longrightarrow 0$ in the weak operator topology. In this paper we present the first extension of this result to the case where $A$ is time dependent.

    Mathematics Subject Classification: Primary: 34G10, 35L90; Secondary: 76D33.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   J. L. Doob, Stochastic Processes Reprint of the 1953 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc. , New York, 1990. doi: 10.1007/0-471-52369-0.
      J. A. Goldstein , An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969) , 359-363.  doi: 10.1090/S0002-9939-1969-0250125-1.
      J. A. Goldstein , An asymptotic property of solutions of wave equations, Ⅱ, J. Math. Anal. Appl., 32 (1970) , 392-399.  doi: 10.1016/0022-247X(70)90305-7.
      J. A. Goldstein, Semigroups of Linear Operators and Applications 1$^{st}$ edition, Oxford University Press, New York and Oxford, 1985. doi: 10.1007/0-19-503540-2.
      J. A. Goldstein  and  G. Reyes , Equipartition of operator weighted energies in damped wave equations, Asymptotic Anal., 81 (2013) , 171-187. 
  • 加载中
SHARE

Article Metrics

HTML views(1078) PDF downloads(197) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return