The identification of optimal structures in reaction-diffusion models is of great importance in numerous physicochemical systems. We propose here a simple method to monitor the number of interphases formed after long simulated times by using a boundary flux condition as a control parameter. We consider as an illustration a 1-D Allen-Cahn equation with Neumann boundary conditions. Numerical examples are provided and perspectives for the application of this approach to electrochemical systems are discussed.
Citation: |
Figure 9. Optimal control $\alpha(t)$ (A) and merit function $J(u)=10 \parallel u-1\parallel +\parallel u+1\parallel$ (B) computed with $\epsilon=0.005, \ \Delta t = 0.00001, \ T=0.001, \ N=255$ starting from a random initial datum. Solution obtained without control (C) and with the optimal control (D)
S. M. Allen and J. W. Cahn , A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. Mater., 27 (1979) , 1085-1095. doi: 10.1016/0001-6160(79)90196-2. | |
S. Bartels, Numerical Methods for Nonlinear PDEs Springer, 2015. doi: 10.1007/978-3-319-13797-1. | |
G. Caginalp , An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986) , 205-245. doi: 10.1007/BF00254827. | |
J. W. Cahn and S. M. Allen , A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979) , 1084-1095. | |
J. W. Cahn and J. E. Hilliard , Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28 (1958) , 258-267. doi: 10.1002/9781118788295.ch4. | |
L. Calatroni and P. Colli , Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013) , 12-27. doi: 10.1016/j.na.2012.11.010. | |
L. Q. Chen , Phase-field models for microstructure evolution, Annual Review of Material Research, 32 (2002) , 113-140. doi: 10.1146/annurev.matsci.32.112001.132041. | |
L. Q. Chen and J. Shen , Applications of semi-implicit Fourier-spectral method to phase-field equations, Comput. Phys. Comm., 108 (1998) , 147-158. doi: 10.1016/S0010-4655(97)00115-X. | |
L. Cherfils and M. Pierre , Non-global existence for an Allen-Cahn-Gurtin equation with logarithmic free energy, J. Evol. Equ., 8 (2008) , 727-748. doi: 10.1007/s00028-008-0412-5. | |
L. Cherfils , M. Petcu and M. Pierre , A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27 (2010) , 1511-1533. doi: 10.3934/dcds.2010.27.1511. | |
P. Colli and J. Sprekels , Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary condition, SIAM J. Control Optim., 53 (2015) , 213-234. doi: 10.1137/120902422. | |
A. R. Conn, K. Scheinberg and L. N. Vicente, Introduction to Derivative-Free Optimization MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898718768. | |
A. A. Franco and K. H. Xue , Carbon-based electrodes for lithium air batteries: Scientific and technological challenges from a modeling perspective, ECS Journal of Solid State Science and Technology, 2 (2013) , 3084-3100. doi: 10.1149/2.012310jss. | |
A. A. Franco , Multiscale modeling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges, RSC Advances, 3 (2013) , 13027-13058. | |
A. A. Franco, MS LIBER–T computational software, Available from: http://www.modeling-electrochemistry.com/ms-liber-t/ | |
M. E. Gurtin , Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996) , 178-192. doi: 10.1016/0167-2789(95)00173-5. | |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981. | |
L. Ignat , A. Pozo and E. Zuazua , Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws, Math. Comp., 84 (2015) , 1633-1662. doi: 10.1090/S0025-5718-2014-02915-3. | |
H. Israel , Well-posedness and long time behavior of an Allen-Cahn type equation, Commun. Pure Appl. Anal., 12 (2013) , 2811-2827. doi: 10.3934/cpaa.2013.12.2811. | |
G. Karali and Y. Nagase , On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014) , 127-137. doi: 10.3934/dcdss.2014.7.127. | |
D. Kondepudi and I. Prigogine , Modern thermodynamics: From heat engines to dissipative structures, John & Wiley Sons Ltd., 8 (2014) , p56. doi: 10.3934/dcdss.2014.7.127. | |
H. G. Lee and J.-Y. Lee , A semi-analytical Fourier spectral method for the Allen-Cahn equation, Comput. Math. Appl., 68 (2014) , 174-184. doi: 10.1016/j.camwa.2014.05.015. | |
A. Makki and A. Miranville , Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems, Electron. J. Diff. Eq., 4 (2015) , 15 pp. doi: 10.1002/9781118698723. | |
K. Malek , M. Eikerling , Q. Wang , T. Navessin and Z. Liu , Self organization in catalyst layers of PEM Fuel Cells, J. Phys. Chem. C, 111 (2007) , 13627-13634. | |
K. Malek and A. A. Franco , Microstructural resolved modeling of aging mechanisms in PEMFC, J. Phys. Chem. B, 115 (2011) , 8088-8101. | |
Matlab's optimization toolbox, Available from: http://www.mathworks.fr/fr/products/optimization/index.html | |
A. Miranville , Existence of solutions for a one-dimensional Allen-Cahn equation, J. Appl. Anal. Comput., 3 (2013) , 265-277. | |
E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monographs Series, Princeton University Press, 2005. | |
M. Pierre, Etude Numérique et Mathématique de Quelques Modéles de Transition de Phase, de Séparation de Phases et de Cristaux Liquides Habilitation à diriger les recherches, (in French), Université de Poitiers (Oct. 2011). | |
N. Provatas , J. A. Dantzig , B. Athreya , P. Chan , P. Stefanovic , N. Goldenfeld and K. R. Elder , Using the phase-field crystal method in the multi-scale modeling of microstructure evolution, J. of the Minerals, Metals and Materials Society, 59 (2007) , 83-90. | |
C. Sachs , M. Hildebrand , S. Völkening , J. Wintterlin and G. Ertl , Spatiotemporal self-organization in a surface reaction: From the atomic to the mesoscopic scale, Science, 293 (2001) , 1635-1638. doi: 10.1126/science.1062883. | |
A. Sirimungkala , H.-D. Försterling and V. Dlask , Bromination Reactions Important in the Mechanism of the Belousov-Zhabotinsky System, J. Phys. Chem. A, 103 (1999) , 1038-1043. doi: 10.1021/jp9825213. | |
J. Shen and X. Yang , Numerical Approximations of Allen-Cahn and Cahn-Hilliard Equations, DCDS, Series A, 28 (2010) , 1669-1691. doi: 10.3934/dcds.2010.28.1669. |
Solution of the Allen-Cahn equation (1) with
Multiphase decomposition of a signal
Optimal control
Optimal control
Optimal control
Optimal control
Optimal control
Optimal control
Optimal control