We study by Γ-convergence the stochastic homogenization of discrete energies on a class of random lattices as the lattice spacing vanishes. We consider general bounded spin systems at the bulk scaling and prove a homogenization result for stationary lattices. In the ergodic case we obtain a deterministic limit.
Citation: |
M. A. Akcoglu
and U. Krengel
, Ergodic theorems for superadditive processes, J. Reine Ang. Math., 323 (1981)
, 53-67.
doi: 10.1515/crll.1981.323.53.![]() ![]() ![]() |
|
R. Alicandro
and M. Cicalese
, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004)
, 1-37.
doi: 10.1137/S0036141003426471.![]() ![]() ![]() |
|
R. Alicandro, A. Braides and M. Cicalese, book in preparation.
![]() |
|
R. Alicandro
, A. Braides
and M. Cicalese
, Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. and PDE, 33 (2008)
, 267-297.
doi: 10.1007/s00526-008-0159-4.![]() ![]() ![]() |
|
R. Alicandro
, M. Cicalese
and A. Gloria
, Variational description of bulk energies for bounded and unbounded spin systems, Nonlinearity, 21 (2008)
, 1881-1910.
doi: 10.1088/0951-7715/21/8/008.![]() ![]() ![]() |
|
R. Alicandro
, M. Cicalese
and A. Gloria
, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rat. Mech. Anal., 200 (2011)
, 881-943.
doi: 10.1007/s00205-010-0378-7.![]() ![]() ![]() |
|
R. Alicandro
, M. Cicalese
and M. Ruf
, Domain formation in magnetic polymer composites: An approach via stochastic homogenization, Arch. Rat. Mech. Anal., 218 (2015)
, 945-984.
doi: 10.1007/s00205-015-0873-y.![]() ![]() ![]() |
|
R. Alicandro
and M. S. Gelli
, Local and non local continuum limits of Ising type energies for spin systems, SIAM J. Math. Anal., 48 (2016)
, 895-931.
doi: 10.1137/140997373.![]() ![]() ![]() |
|
A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22, Oxford University Press, Oxford, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001.![]() ![]() ![]() |
|
A. Braides
and M. Cicalese
, Interfaces, modulated phases and textures in lattice systems, Arch. Rat. Mech. Anal., (2016)
, 1-41.
doi: 10.1007/s00205-016-1050-7.![]() ![]() |
|
A. Braides
, M. Cicalese
and F. Solombrino
, Q-tensor continuum energies as limits of head-to-tail symmetric spin systems, SIAM J. Math. Anal., 47 (2015)
, 2832-2867.
doi: 10.1137/130941341.![]() ![]() ![]() |
|
A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications 12, Oxford University Press, New York, 1998.
![]() ![]() |
|
A. Braides
and L. Truskinovsky
, Asymptotic expansions by Γ-convergence, Contin. Mech. Thermodyn., 20 (2008)
, 21-62.
doi: 10.1007/s00161-008-0072-2.![]() ![]() ![]() |
|
G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations (Pitman Research Notes in Mathematics Ser. 207), 1989.
![]() ![]() |
|
M. Cicalese
, M. Ruf
and F. Solombrino
, Chirality transitions in frustrated S2-valued spin systems, Math. Models Methods Appl. Sci., 26 (2016)
, 1481-1529.
doi: 10.1142/S0218202516500366.![]() ![]() ![]() |
|
M. Cicalese
and F. Solombrino
, Frustrated ferromagnetic spin chains: A variational approach to chirality transitions, Journal of Nonlinear Science, 25 (2015)
, 291-313.
doi: 10.1007/s00332-015-9230-4.![]() ![]() ![]() |
|
G. Dal Maso
and L. Modica
, Integral functionals determined by their minima, Rend. Semin. Mat. Univ. Padova, 76 (1986)
, 255-267.
![]() ![]() |
|
G. Dal Maso
and L. Modica
, Nonlinear stochastic homogenization and ergodic theory, J. Reine. Ang. Math., 368 (1986)
, 28-42.
![]() ![]() |
|
I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces Springer, New York, 2007.
![]() ![]() |
|
D. Gale
, V. Klee
and R. T. Rockafellar
, Convex functions on convex polytopes, Proc. Amer. Math. Soc., 19 (1968)
, 867-873.
doi: 10.1090/S0002-9939-1968-0230219-6.![]() ![]() ![]() |