
-
Previous Article
Carbon-nanotube geometries: Analytical and numerical results
- DCDS-S Home
- This Issue
-
Next Article
Discrete spin systems on random lattices at the bulk scaling
Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires
1. | SISSA, Via Bonomea 265, 34136 Trieste, Italy |
2. | University of Sussex, Department of Mathematics, Pevensey 2 Building, Falmer Campus, Brighton BN1 9QH, United Kingdom |
3. | University of Würzburg, Institute of Mathematics, Emil-Fischer-Straße 40, 97074 Würzburg, Germany |
In the context of nanowire heterostructures we perform a discrete to continuum limit of the corresponding free energy by means of Γ-convergence techniques. Nearest neighbours are identified by employing the notions of Voronoi diagrams and Delaunay triangulations. The scaling of the nanowire is done in such a way that we perform not only a continuum limit but a dimension reduction simultaneously. The main part of the proof is a discrete geometric rigidity result that we announced in an earlier work and show here in detail for a variety of three-dimensional lattices. We perform the passage from discrete to continuum twice: once for a system that compensates a lattice mismatch between two parts of the heterogeneous nanowire without defects and once for a system that creates dislocations. It turns out that we can verify the experimentally observed fact that the nanowires show dislocations when the radius of the specimen is large.
References:
[1] |
R. Alicandro, G. Lazzaroni and M. Palombaro, Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours Preprint SISSA 58/2016/MATE. Google Scholar |
[2] |
A. Braides, M. Solci and E. Vitali,
A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567.
doi: 10.3934/nhm.2007.2.551. |
[3] |
E. Ertekin, P. A. Greaney, D. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, J. Appl. Phys., 97 (2005), 114325. Google Scholar |
[4] |
S. Fanzon, M. Palombaro and M. Ponsiglione, A variational model for dislocations at semi-coherent interfaces, Preprint arXiv: 1512. 03795 (2015). Google Scholar |
[5] |
L. Flatley and F. Theil,
Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal., 218 (2015), 363-416.
doi: 10.1007/s00205-015-0862-1. |
[6] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[7] |
G. Friesecke and F. Theil,
Validity and failure of the Cauchy-Born Hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478.
doi: 10.1007/s00332-002-0495-z. |
[8] | G. Grosso and G. Pastori Parravicini, Solid State Physics, 2nd edition, Academic Press, Elsevier, Oxford, 2014. Google Scholar |
[9] |
P. M. Gruber and J. M. Willis, eds. , Handbook of Convex Geometry, Volume A. , Elsevier Science Publishers B. V. , North-Holland, Amsterdam, 1993. Google Scholar |
[10] |
K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol., 25 (2010), 024006. Google Scholar |
[11] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper,
A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.
doi: 10.4310/CMS.2015.v13.n5.a3. |
[12] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper, Dislocations in nanowire heterostructures: From discrete to continuum, Proc. Appl. Math. Mech., 13 (2013), 541-544. Google Scholar |
[13] |
S. Müller and M. Palombaro,
Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.
doi: 10.1007/s00526-012-0552-x. |
[14] |
B. Schmidt,
A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.
doi: 10.1137/050646251. |
[15] |
V. Schmidt, J. V. Wittemann and U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388. Google Scholar |
[16] |
F. Theil,
A proof of crystallization in two dimensions, Comm. Math. Phys., 262 (2006), 209-236.
doi: 10.1007/s00220-005-1458-7. |
show all references
References:
[1] |
R. Alicandro, G. Lazzaroni and M. Palombaro, Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours Preprint SISSA 58/2016/MATE. Google Scholar |
[2] |
A. Braides, M. Solci and E. Vitali,
A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567.
doi: 10.3934/nhm.2007.2.551. |
[3] |
E. Ertekin, P. A. Greaney, D. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, J. Appl. Phys., 97 (2005), 114325. Google Scholar |
[4] |
S. Fanzon, M. Palombaro and M. Ponsiglione, A variational model for dislocations at semi-coherent interfaces, Preprint arXiv: 1512. 03795 (2015). Google Scholar |
[5] |
L. Flatley and F. Theil,
Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal., 218 (2015), 363-416.
doi: 10.1007/s00205-015-0862-1. |
[6] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[7] |
G. Friesecke and F. Theil,
Validity and failure of the Cauchy-Born Hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478.
doi: 10.1007/s00332-002-0495-z. |
[8] | G. Grosso and G. Pastori Parravicini, Solid State Physics, 2nd edition, Academic Press, Elsevier, Oxford, 2014. Google Scholar |
[9] |
P. M. Gruber and J. M. Willis, eds. , Handbook of Convex Geometry, Volume A. , Elsevier Science Publishers B. V. , North-Holland, Amsterdam, 1993. Google Scholar |
[10] |
K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol., 25 (2010), 024006. Google Scholar |
[11] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper,
A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.
doi: 10.4310/CMS.2015.v13.n5.a3. |
[12] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper, Dislocations in nanowire heterostructures: From discrete to continuum, Proc. Appl. Math. Mech., 13 (2013), 541-544. Google Scholar |
[13] |
S. Müller and M. Palombaro,
Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.
doi: 10.1007/s00526-012-0552-x. |
[14] |
B. Schmidt,
A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.
doi: 10.1137/050646251. |
[15] |
V. Schmidt, J. V. Wittemann and U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388. Google Scholar |
[16] |
F. Theil,
A proof of crystallization in two dimensions, Comm. Math. Phys., 262 (2006), 209-236.
doi: 10.1007/s00220-005-1458-7. |









[1] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059 |
[2] |
Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361 |
[3] |
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021065 |
[4] |
Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021080 |
[5] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[6] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[7] |
Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021069 |
[8] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[9] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[10] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[11] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[12] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[13] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383 |
[14] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[15] |
Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021050 |
[16] |
Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224 |
[17] |
Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036 |
[18] |
Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021044 |
[19] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[20] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]