February  2017, 10(1): 141-160. doi: 10.3934/dcdss.2017008

Carbon-nanotube geometries: Analytical and numerical results

1. 

Dipartimento di Ingegneria meccanica, energetica, gestionale, e dei trasporti (DIME), Università degli Studi di Genova, Piazzale Kennedy 1, I-16129 Genova, Italy

2. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

3. 

Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan

4. 

Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes" -CNR, v. Ferrata 1, I-27100 Pavia, Italy

Received  June 2015 Revised  October 2015 Published  December 2016

We investigate carbon-nanotubes under the perspective ofgeometry optimization. Nanotube geometries are assumed to correspondto atomic configurations whichlocally minimize Tersoff-type interactionenergies. In the specific cases of so-called zigzag and armchairtopologies, candidate optimal configurations are analytically identifiedand their local minimality is numerically checked. Inparticular, these optimal configurations do not correspond neither tothe classical Rolled-up model [5] nor to themore recent polyhedral model [3]. Eventually, theelastic response of the structure under uniaxial testing is numericallyinvestigated and the validity of the Cauchy-Born rule is confirmed.

Citation: Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008
References:
[1]

P. M. AgrawalB. S. SudalayandiL. M. Raff and R. Komandur, Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450-456.  doi: 10.1016/j.commatsci.2007.05.001.  Google Scholar

[2]

M. E. BudykaT. S. ZyubinaA. G. RyabenkoS. H. Lin and A. M. Mebel, Bond lengths and diameters of armchair single-walled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266-271.   Google Scholar

[3]

B. J. Cox and J. M. Hill, Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 1453-1462.  doi: 10.1016/j.carbon.2007.03.028.  Google Scholar

[4]

M. S. DresselhausG. Dresselhaus and R. Saito, Carbon fibers based on C60 ad their symmetry, Phys. Rev. B, 45 (1992), 6234-6242.   Google Scholar

[5]

M. S. DresselhausG. Dresselhaus and R. Saito, Physics of carbon nanotubes, Carbon Nanotubes, (1996), 27-35.  doi: 10.1016/B978-0-08-042682-2.50009-6.  Google Scholar

[6]

W. E and D. Li, On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 1099-1140.  doi: 10.1007/s00220-008-0586-2.  Google Scholar

[7]

R. D. James, Objective structures, J. Mech. Phys. Solids, 54 (2006), 2354-2390.  doi: 10.1016/j.jmps.2006.05.008.  Google Scholar

[8]

H. JiangP. ZhangB. LiuY. HuansP. H. GeubelleH. Gao and K. C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429-442.  doi: 10.1016/j.commatsci.2003.08.004.  Google Scholar

[9]

V. K. Jindal and A. N. Imtani, Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156-162.   Google Scholar

[10]

R. A. JishiM. S. Dresselhaus and G. Dresselhaus, Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671-166674.   Google Scholar

[11]

K. Kanamits and S. Saito, Geometries, electronic properties, and energetics of isolated single-walled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483-486.  doi: 10.1143/JPSJ.71.483.  Google Scholar

[12]

A. KrishnanE. DujardinT. W. EbbesenP. N. Yianilos and M. M. J. Treacy, Young's modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 14013-14019.  doi: 10.1103/PhysRevB.58.14013.  Google Scholar

[13]

J. KurtiV. ZolyomiM. Kertesz and G. Sun, The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 1-21.   Google Scholar

[14]

R. K. F. LeeB. J. Cox and J. M. Hill, General rolled-up and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726-748.  doi: 10.1080/1536383X.2010.494786.  Google Scholar

[15]

E. Mainini and U. Stefanelli, Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545-571.  doi: 10.1007/s00220-014-1981-5.  Google Scholar

[16]

E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube Geometries as Optimal Configurations preprint, 2016. Google Scholar

[17]

L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902. doi: 10.1103/PhysRevB. 69. 045414.  Google Scholar

[18]

L. Shen and J. Li, Equilibrium structure and strain energy of single-walled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427.  doi: 10.1103/PhysRevB.71.165427.  Google Scholar

[19]

F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 5262-5271.  doi: 10.1103/PhysRevB.31.5262.  Google Scholar

[20]

J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 6991-7000.  doi: 10.1103/PhysRevB.37.6991.  Google Scholar

[21]

M. M. J. TreacyT. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.  doi: 10.1038/381678a0.  Google Scholar

[22]

M.-F. YuB. S. FilesS. Arepalli and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 5552-5555.  doi: 10.1103/PhysRevLett.84.5552.  Google Scholar

[23]

T. ZhangZ. S. Yuan and L. H. Tan, Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes, Nano-Micro Lett., 3 (2011), 28-235.  doi: 10.1007/BF03353677.  Google Scholar

[24]

X. ZhaoY. LiuS. InoueR. O. Jones and Y. Ando, Smallest carbon nanotibe is 3Å in diameter, Phys. Rev. Lett., 92 (2004), 125502.  doi: 10.1007/BF03353677.  Google Scholar

show all references

References:
[1]

P. M. AgrawalB. S. SudalayandiL. M. Raff and R. Komandur, Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450-456.  doi: 10.1016/j.commatsci.2007.05.001.  Google Scholar

[2]

M. E. BudykaT. S. ZyubinaA. G. RyabenkoS. H. Lin and A. M. Mebel, Bond lengths and diameters of armchair single-walled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266-271.   Google Scholar

[3]

B. J. Cox and J. M. Hill, Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 1453-1462.  doi: 10.1016/j.carbon.2007.03.028.  Google Scholar

[4]

M. S. DresselhausG. Dresselhaus and R. Saito, Carbon fibers based on C60 ad their symmetry, Phys. Rev. B, 45 (1992), 6234-6242.   Google Scholar

[5]

M. S. DresselhausG. Dresselhaus and R. Saito, Physics of carbon nanotubes, Carbon Nanotubes, (1996), 27-35.  doi: 10.1016/B978-0-08-042682-2.50009-6.  Google Scholar

[6]

W. E and D. Li, On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 1099-1140.  doi: 10.1007/s00220-008-0586-2.  Google Scholar

[7]

R. D. James, Objective structures, J. Mech. Phys. Solids, 54 (2006), 2354-2390.  doi: 10.1016/j.jmps.2006.05.008.  Google Scholar

[8]

H. JiangP. ZhangB. LiuY. HuansP. H. GeubelleH. Gao and K. C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429-442.  doi: 10.1016/j.commatsci.2003.08.004.  Google Scholar

[9]

V. K. Jindal and A. N. Imtani, Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156-162.   Google Scholar

[10]

R. A. JishiM. S. Dresselhaus and G. Dresselhaus, Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671-166674.   Google Scholar

[11]

K. Kanamits and S. Saito, Geometries, electronic properties, and energetics of isolated single-walled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483-486.  doi: 10.1143/JPSJ.71.483.  Google Scholar

[12]

A. KrishnanE. DujardinT. W. EbbesenP. N. Yianilos and M. M. J. Treacy, Young's modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 14013-14019.  doi: 10.1103/PhysRevB.58.14013.  Google Scholar

[13]

J. KurtiV. ZolyomiM. Kertesz and G. Sun, The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 1-21.   Google Scholar

[14]

R. K. F. LeeB. J. Cox and J. M. Hill, General rolled-up and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726-748.  doi: 10.1080/1536383X.2010.494786.  Google Scholar

[15]

E. Mainini and U. Stefanelli, Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545-571.  doi: 10.1007/s00220-014-1981-5.  Google Scholar

[16]

E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube Geometries as Optimal Configurations preprint, 2016. Google Scholar

[17]

L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902. doi: 10.1103/PhysRevB. 69. 045414.  Google Scholar

[18]

L. Shen and J. Li, Equilibrium structure and strain energy of single-walled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427.  doi: 10.1103/PhysRevB.71.165427.  Google Scholar

[19]

F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 5262-5271.  doi: 10.1103/PhysRevB.31.5262.  Google Scholar

[20]

J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 6991-7000.  doi: 10.1103/PhysRevB.37.6991.  Google Scholar

[21]

M. M. J. TreacyT. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.  doi: 10.1038/381678a0.  Google Scholar

[22]

M.-F. YuB. S. FilesS. Arepalli and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 5552-5555.  doi: 10.1103/PhysRevLett.84.5552.  Google Scholar

[23]

T. ZhangZ. S. Yuan and L. H. Tan, Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes, Nano-Micro Lett., 3 (2011), 28-235.  doi: 10.1007/BF03353677.  Google Scholar

[24]

X. ZhaoY. LiuS. InoueR. O. Jones and Y. Ando, Smallest carbon nanotibe is 3Å in diameter, Phys. Rev. Lett., 92 (2004), 125502.  doi: 10.1007/BF03353677.  Google Scholar

Figure 1.  Rolling-up of nanotubes from a graphene sheet
Figure 2.  Notation for bonds and bond angles
Figure 3.  Zigzag nanotube
Figure 4.  The construction of the function $\beta_z$
Figure 5.  The angle $\beta_z$ as a function of the angle $\alpha$ (above) and a zoom (below) with the points $(\alpha^{\rm ru}_z,\beta_z(\alpha^{\rm ru}_z))$ and $(\alpha^{\rm ch}_z,\beta_z(\alpha^{\rm ch}_z))$ for $\ell=10$
Figure 6.  The angle $\beta_a$ as a function of the angle $\alpha$ (above) and a zoom (below) with the points $(\alpha^{\rm ru}_a,\beta_a(\alpha^{\rm ru}_a))$ and $(\alpha^{\rm ch}_a,\beta_a(\alpha^{\rm ch}_a))$ for $\ell=10$
Figure 7.  The energy-per-particle $\widehat E_i$ in the zigzag (above) and in the armchair (below) family, as a function of the angle $\alpha$ for $\ell=10$, together with a zoom about the minimum
Figure 8.  Comparison between energies of the optimal configurations and energies of their perturbations in the cases Z1, Z2, Z3 (left, from the top) and A1, A2, A3 (right, from the top). The marker corresponds to the optimal configuration $\mathcal{F}_i^*$ and value $\alpha$ represents the mean of all $\alpha$-angles in the configuration
Figure 9.  Optimality of the configuration $(F^*_L,L)\in \mathscr{F}_z$ (bottom point) for all given $L$ in a neighborhood of $L^*$
Figure 10.  Elastic response of the nanotube Z1 under uniaxial small (left) and large displacements (right). The function $L \mapsto E(F_L^*,L)$ (bottom) corresponds to the lower envelope of the random evaluations (top)
[1]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[2]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[3]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[4]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[5]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[8]

Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021126

[9]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[10]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[11]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[12]

Monica Conti, Vittorino Pata, Marta Pellicer, Ramon Quintanilla. A new approach to MGT-thermoviscoelasticity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021052

[13]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[14]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[15]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021125

[16]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[17]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[18]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[19]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[20]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (77)
  • HTML views (166)
  • Cited by (2)

[Back to Top]