October 2017, 10(5): 973-993. doi: 10.3934/dcdss.2017051

Global Hopf bifurcation of a population model with stage structure and strong Allee effect

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

* Corresponding author: Junjie Wei

Received  July 2016 Revised  February 2017 Published  June 2017

Fund Project: This research is supported by National Natural Science Foundation of China (No. 11371111)

This paper is devoted to the study of a single-species population model with stage structure and strong Allee effect. By taking $τ$ as a bifurcation parameter, we study the Hopf bifurcation and global existence of periodic solutions using Wu's theory on global Hopf bifurcation for FDEs and the Bendixson criterion for higher dimensional ODEs proposed by Li and Muldowney. Some numerical simulations are presented to illustrate our analytic results using MATLAB and DDE-BIFTOOL. In addition, interesting phenomenon can be observed such as two kinds of bistability.

Citation: Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051
References:
[1]

W. C. Allee, Animal aggregations: A study in general sociology, The Quarterly Review of Biology, 2 (1927), 367-398. doi: 10.1086/394281.

[2]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, 33 (2002), 1144-1165. doi: 10.1137/S0036141000376086.

[3]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations Heath Boston, 1965.

[4]

K. EngelborghsT. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Transactions on Mathematical Software, 28 (2002), 1-21. doi: 10.1145/513001.513002.

[5]

K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab Package for Bifurcation Analysis of Delay Differential Equations, Ph. D thesis, Katholieke Universiteit Leuven, 2001.

[6]

D. FanL. Hong and J. Wei, Hopf bifurcation analysis in synaptically coupled HR neurons with two time delays, Nonlinear Dynamics, 62 (2010), 305-319. doi: 10.1007/s11071-010-9718-2.

[7]

J. Hale, Theory of Functional Differential Equations Springer-Verlag, New York, 1977.

[8]

J. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[9]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University, Cambridge, 1981.

[10]

J. Jiang and J. Shi, Bistability Dynamics in Some Structured Ecological Models, in: Spatial Ecology, in: Chapman and Hall/CRC Mathematical and Computational Biology, CRC press, Boca Raton, 2009.

[11]

L. Junges and J. A. C. Gallas, Intricate routes to chaos in the {M}ackey-{G}lass delayed feedback system, Physics Letters A, 376 (2012), 2109-2116. doi: 10.1016/j.physleta.2012.05.022.

[12]

M. Y. Li and J. S. Muldowney, On bendixson's criterion, Journal of Differential Equations, 106 (1993), 27-39. doi: 10.1006/jdeq.1993.1097.

[13]

M. Y. Li and J. S. Muldowney, On R.A. Smith's autonomous convergence theorem, Journal of Mathematics, 25 (1995), 365-379. doi: 10.1216/rmjm/1181072289.

[14]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289. doi: 10.1126/science.267326.

[15]

A. Y. MorozovM. Banerjee and S. V. Petrovskii, Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect, Journal of Theoretical Biology, 396 (2016), 116-124. doi: 10.1016/j.jtbi.2016.02.016.

[16]

J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain Journal of Mathematics, 20 (1990), 857-872. doi: 10.1216/rmjm/1181073047.

[17]

Y. Qu and J. Wei, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear Dynamics, 49 (2007), 285-294. doi: 10.1007/s11071-006-9133-x.

[18]

Y. QuJ. Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays, Physica D: Nonlinear Phenomena, 239 (2010), 2011-2024. doi: 10.1016/j.physd.2010.07.013.

[19]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete and Impulsive Systems, 10 (2003), 863-874.

[20]

H. ShuL. Wang and J. Wu, Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations, Journal of Differential Equations, 255 (2013), 2565-2586. doi: 10.1016/j.jde.2013.06.020.

[21]

J. WangJ. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, Journal of Differential Equations, 251 (2011), 1276-1304. doi: 10.1016/j.jde.2011.03.004.

[22]

J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20 (2007), 2483-2498. doi: 10.1088/0951-7715/20/11/002.

[23]

J. Wei and D. Fan, Hopf bifurcation analysis in a Mackey-Glass system, International Journal of Bifurcation and Chaos, 17 (2007), 2149-2157. doi: 10.1142/S0218127407018282.

[24]

J. Wu, Symmetric functional differential equations and neural networks with memory, Transactions of the American Mathematical Society, 350 (1998), 4799-4838. doi: 10.1090/S0002-9947-98-02083-2.

show all references

References:
[1]

W. C. Allee, Animal aggregations: A study in general sociology, The Quarterly Review of Biology, 2 (1927), 367-398. doi: 10.1086/394281.

[2]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, 33 (2002), 1144-1165. doi: 10.1137/S0036141000376086.

[3]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations Heath Boston, 1965.

[4]

K. EngelborghsT. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Transactions on Mathematical Software, 28 (2002), 1-21. doi: 10.1145/513001.513002.

[5]

K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab Package for Bifurcation Analysis of Delay Differential Equations, Ph. D thesis, Katholieke Universiteit Leuven, 2001.

[6]

D. FanL. Hong and J. Wei, Hopf bifurcation analysis in synaptically coupled HR neurons with two time delays, Nonlinear Dynamics, 62 (2010), 305-319. doi: 10.1007/s11071-010-9718-2.

[7]

J. Hale, Theory of Functional Differential Equations Springer-Verlag, New York, 1977.

[8]

J. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[9]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University, Cambridge, 1981.

[10]

J. Jiang and J. Shi, Bistability Dynamics in Some Structured Ecological Models, in: Spatial Ecology, in: Chapman and Hall/CRC Mathematical and Computational Biology, CRC press, Boca Raton, 2009.

[11]

L. Junges and J. A. C. Gallas, Intricate routes to chaos in the {M}ackey-{G}lass delayed feedback system, Physics Letters A, 376 (2012), 2109-2116. doi: 10.1016/j.physleta.2012.05.022.

[12]

M. Y. Li and J. S. Muldowney, On bendixson's criterion, Journal of Differential Equations, 106 (1993), 27-39. doi: 10.1006/jdeq.1993.1097.

[13]

M. Y. Li and J. S. Muldowney, On R.A. Smith's autonomous convergence theorem, Journal of Mathematics, 25 (1995), 365-379. doi: 10.1216/rmjm/1181072289.

[14]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287-289. doi: 10.1126/science.267326.

[15]

A. Y. MorozovM. Banerjee and S. V. Petrovskii, Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect, Journal of Theoretical Biology, 396 (2016), 116-124. doi: 10.1016/j.jtbi.2016.02.016.

[16]

J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mountain Journal of Mathematics, 20 (1990), 857-872. doi: 10.1216/rmjm/1181073047.

[17]

Y. Qu and J. Wei, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear Dynamics, 49 (2007), 285-294. doi: 10.1007/s11071-006-9133-x.

[18]

Y. QuJ. Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays, Physica D: Nonlinear Phenomena, 239 (2010), 2011-2024. doi: 10.1016/j.physd.2010.07.013.

[19]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete and Impulsive Systems, 10 (2003), 863-874.

[20]

H. ShuL. Wang and J. Wu, Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations, Journal of Differential Equations, 255 (2013), 2565-2586. doi: 10.1016/j.jde.2013.06.020.

[21]

J. WangJ. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, Journal of Differential Equations, 251 (2011), 1276-1304. doi: 10.1016/j.jde.2011.03.004.

[22]

J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20 (2007), 2483-2498. doi: 10.1088/0951-7715/20/11/002.

[23]

J. Wei and D. Fan, Hopf bifurcation analysis in a Mackey-Glass system, International Journal of Bifurcation and Chaos, 17 (2007), 2149-2157. doi: 10.1142/S0218127407018282.

[24]

J. Wu, Symmetric functional differential equations and neural networks with memory, Transactions of the American Mathematical Society, 350 (1998), 4799-4838. doi: 10.1090/S0002-9947-98-02083-2.

Figure 1.  The growth rate per capita $r(y)=\frac{y^{n-1}}{1+y^m}-0.15$ in system $\dot y=\frac{y^n}{1+y^m}-0.15y=r(y)y$
Figure 2.  Figures of $\bar{y}$ and equilibria $y_1$, $y_2$ with parameters given in (18)
Figure 3.  Graphs of $S_n(\tau)$ on $\left[0, \tau^{1}\right)$ with parameters given in (18)
Figure 4.  $y_1\approx0.6986$ is unstable, and sustained oscillation occurs when $\tau\in[0, \tau^0)$, where $0 < \tau=8 < \tau^0\approx22.2$, and the initial condition is $\varphi=0.8$ for $t\in[-\tau, 0]$
Figure 5.  $y_2$ is asymptotically stable when $\tau\in[0, \tau_0)\cup\left(\tau_1, \tau^0\right)$, and the initial condition is $\varphi=1.1$ for $t\in[-\tau, 0]$
Figure 6.  $y_2\approx1.0962$ is unstable, and sustained oscillation occurs when $\tau\in(\tau_0, \tau_1)$, where $2.8\approx\tau_0 < \tau=10 < \tau_1\approx14.8$, and the initial condition is $\varphi=1.1$ for $t\in[-\tau, 0]$
Figure 7.  $\tau$, h) plane, where $h=\sqrt{2}D-\alpha |b'| e^{-\delta\tau}$
Figure 8.  Hopf bifurcation branch on the ($\tau$, d) plane, where $d=\max y(t)-\min y(t)$
Figure 9.  Stability of equilibria $0, ~y_1, ~y_2$ and periodic solutions bifurcated from $y_2$
Table 1.  List of quantities of periodic solution bifurcating from $y_2$ under (18)
$\delta$ $\text{Re}(c_1(0))$ $\mu_2$ $\beta_2$
$~~\tau_0\approx 2.8$ $>0$ $-37.3115 < 0$ $>0$ $ < 0~~$
$~~\tau_1\approx14.6$ $ < 0$ $-72.7255 < 0$ $ < 0$ $ < 0~~$
$\delta$ $\text{Re}(c_1(0))$ $\mu_2$ $\beta_2$
$~~\tau_0\approx 2.8$ $>0$ $-37.3115 < 0$ $>0$ $ < 0~~$
$~~\tau_1\approx14.6$ $ < 0$ $-72.7255 < 0$ $ < 0$ $ < 0~~$
[1]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[2]

S. R.-J. Jang. Allee effects in a discrete-time host-parasitoid model with stage structure in the host. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 145-159. doi: 10.3934/dcdsb.2007.8.145

[3]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[4]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[5]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[6]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[7]

Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273

[8]

Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049

[9]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[10]

Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040

[11]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[12]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[13]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[14]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[15]

Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026

[16]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[17]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[18]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[19]

Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136

[20]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (34)
  • HTML views (35)
  • Cited by (1)

Other articles
by authors

[Back to Top]