-
Previous Article
A kind of generalized transversality theorem for $C^r$ mapping with parameter
- DCDS-S Home
- This Issue
-
Next Article
Traveling wave solutions of a reaction-diffusion predator-prey model
Pattern formation of a coupled two-cell Schnakenberg model
1. | School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China |
2. | Y. Y. Tseng Functional Analysis Research Center and School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang 150025, China |
$\left\{ \begin{gathered} -d_1Δ u=a-u+u^2v+c(w-u),&\text{ in } Ω, \\-d_2Δ v=b-u^2v,&\text{ in } Ω , \\-d_1Δ w=a-w+w^2z+c(u-w),&\text{ in } Ω, \\-d_2Δ z=b-w^2z,&\text{ in } Ω, \\\dfrac{\partial u}{\partial ν}=\dfrac{\partial v}{\partial ν}=\dfrac{\partial w}{\partial ν}=\dfrac{\partial z}{\partial ν}=0, &\text{ on } \partialΩ.\end{gathered} \right.$ |
$ d_1, d_2, a$ |
References:
[1] |
H. I. Abdel-Gawad and A. M. El-Shrae,
Symmetric patterns in the Dirichlet problem for a two-cell cubic autocatalytor reaction model, Applied Mathematics and Computation, 150 (2004), 623-645.
doi: 10.1016/S0096-3003(03)00295-9. |
[2] |
M. Ghergu and V. D. Radulescu,
Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics, Springer, 2012.
doi: 10.1007/978-3-642-22664-9. |
[3] |
P. Gormley, K. Li and G. W. Irwin,
Modelling molecular interaction pathways using a two-stage identification algorithm, Systems and Synthetic Biology, 1 (2007), 145-160.
doi: 10.1007/s11693-008-9012-5. |
[4] |
D. Iron, J. C. Wei and M. Winter,
Stability analysis of Turing patterns generated by the Schnakenberg model, Journal of Mathematical Biology, 49 (2004), 358-390.
doi: 10.1007/s00285-003-0258-y. |
[5] |
H. Kitano,
Systems biology: A brief overview, Science, 295 (2002), 1662-1664.
doi: 10.1126/science.1069492. |
[6] |
Y. Li,
Steady-state solution for a general Schnakenberg model, Nonlinear Anal. Real World Appl., 12 (2011), 1985-1990.
doi: 10.1016/j.nonrwa.2010.12.014. |
[7] |
Y. Lou and W. M. Ni,
Diffusion, self-diffusion and cross-diffusion, Journal of Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[8] |
Y. Lou and W. M. Ni,
Diffusion vs cross-diffusion: An elliptic approach, Journal of Differential Equations, 154 (1999), 157-190.
doi: 10.1006/jdeq.1998.3559. |
[9] |
J. D. Murray,
Mathematical Biology: Ⅰ. An Introduction, volume 2. Springer, 2002. |
[10] |
R. Peng and M. Wang,
Positive steady-state solutions of the noyes--field model for belousov-zhabotinskii reaction, Nonlinear Analysis: Theory, Methods Applications, 56 (2004), 451-464.
doi: 10.1016/j.na.2003.09.020. |
[11] |
M. R. Ricard and S. Mischler,
Turing instabilities at hopf bifurcation, Journal of Nonlinear Science, 19 (2009), 467-496.
doi: 10.1007/s00332-009-9041-6. |
[12] |
J. Schnakenberg,
Simple chemical reaction systems with limit cycle behaviour, Journal of Theoretical Biology, 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[13] |
I. Schreiber and M. Marek,
Strange attractors in coupled reaction-diffusion cells, Physica D: Nonlinear Phenomena, 5 (1982), 258-272.
doi: 10.1016/0167-2789(82)90021-5. |
[14] |
C. K. Tyson and B. Novak, Network dynamics and cell physiology, Nature Reviews Molecular Cell Biology, 2 (2001), 908-916. |
[15] |
J. C. Wei and M. Winter,
Flow-distributed spikes for Schnakenberg kinetics, J. Math. Biol., 64 (2012), 211-254.
doi: 10.1007/s00285-011-0412-x. |
[16] |
C. Xu and J. J. Wei,
Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model, Nonlinear Anal. Real World Appl., 13 (2012), 1961-1977.
doi: 10.1016/j.nonrwa.2012.01.001. |
[17] |
Q. X. Ye and Z. Y. Li,
Introduction to Reaction-Diffusion Equation, bejing: Sci, 1990. |
[18] |
Y. You, Global attractor of a coupled two-cell brusselator model, Fields Inst. Commun., 64 (2013), 319-352, arXiv: 0906.4345.
doi: 10.1007/978-1-4614-4523-4_13. |
[19] |
J. Zhou and C. L. Mu,
Pattern formation of a coupled two-cell brusselator model, Journal of Mathematical Analysis and Applications, 366 (2010), 679-693.
doi: 10.1016/j.jmaa.2009.12.021. |
[20] |
W. J. Zuo and J. J. Wei,
Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model, Dynamics of Partial Differential Equations, 8 (2011), 363-384.
|
show all references
References:
[1] |
H. I. Abdel-Gawad and A. M. El-Shrae,
Symmetric patterns in the Dirichlet problem for a two-cell cubic autocatalytor reaction model, Applied Mathematics and Computation, 150 (2004), 623-645.
doi: 10.1016/S0096-3003(03)00295-9. |
[2] |
M. Ghergu and V. D. Radulescu,
Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics, Springer, 2012.
doi: 10.1007/978-3-642-22664-9. |
[3] |
P. Gormley, K. Li and G. W. Irwin,
Modelling molecular interaction pathways using a two-stage identification algorithm, Systems and Synthetic Biology, 1 (2007), 145-160.
doi: 10.1007/s11693-008-9012-5. |
[4] |
D. Iron, J. C. Wei and M. Winter,
Stability analysis of Turing patterns generated by the Schnakenberg model, Journal of Mathematical Biology, 49 (2004), 358-390.
doi: 10.1007/s00285-003-0258-y. |
[5] |
H. Kitano,
Systems biology: A brief overview, Science, 295 (2002), 1662-1664.
doi: 10.1126/science.1069492. |
[6] |
Y. Li,
Steady-state solution for a general Schnakenberg model, Nonlinear Anal. Real World Appl., 12 (2011), 1985-1990.
doi: 10.1016/j.nonrwa.2010.12.014. |
[7] |
Y. Lou and W. M. Ni,
Diffusion, self-diffusion and cross-diffusion, Journal of Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[8] |
Y. Lou and W. M. Ni,
Diffusion vs cross-diffusion: An elliptic approach, Journal of Differential Equations, 154 (1999), 157-190.
doi: 10.1006/jdeq.1998.3559. |
[9] |
J. D. Murray,
Mathematical Biology: Ⅰ. An Introduction, volume 2. Springer, 2002. |
[10] |
R. Peng and M. Wang,
Positive steady-state solutions of the noyes--field model for belousov-zhabotinskii reaction, Nonlinear Analysis: Theory, Methods Applications, 56 (2004), 451-464.
doi: 10.1016/j.na.2003.09.020. |
[11] |
M. R. Ricard and S. Mischler,
Turing instabilities at hopf bifurcation, Journal of Nonlinear Science, 19 (2009), 467-496.
doi: 10.1007/s00332-009-9041-6. |
[12] |
J. Schnakenberg,
Simple chemical reaction systems with limit cycle behaviour, Journal of Theoretical Biology, 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[13] |
I. Schreiber and M. Marek,
Strange attractors in coupled reaction-diffusion cells, Physica D: Nonlinear Phenomena, 5 (1982), 258-272.
doi: 10.1016/0167-2789(82)90021-5. |
[14] |
C. K. Tyson and B. Novak, Network dynamics and cell physiology, Nature Reviews Molecular Cell Biology, 2 (2001), 908-916. |
[15] |
J. C. Wei and M. Winter,
Flow-distributed spikes for Schnakenberg kinetics, J. Math. Biol., 64 (2012), 211-254.
doi: 10.1007/s00285-011-0412-x. |
[16] |
C. Xu and J. J. Wei,
Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model, Nonlinear Anal. Real World Appl., 13 (2012), 1961-1977.
doi: 10.1016/j.nonrwa.2012.01.001. |
[17] |
Q. X. Ye and Z. Y. Li,
Introduction to Reaction-Diffusion Equation, bejing: Sci, 1990. |
[18] |
Y. You, Global attractor of a coupled two-cell brusselator model, Fields Inst. Commun., 64 (2013), 319-352, arXiv: 0906.4345.
doi: 10.1007/978-1-4614-4523-4_13. |
[19] |
J. Zhou and C. L. Mu,
Pattern formation of a coupled two-cell brusselator model, Journal of Mathematical Analysis and Applications, 366 (2010), 679-693.
doi: 10.1016/j.jmaa.2009.12.021. |
[20] |
W. J. Zuo and J. J. Wei,
Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model, Dynamics of Partial Differential Equations, 8 (2011), 363-384.
|
[1] |
Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041 |
[2] |
Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 |
[3] |
Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209 |
[4] |
Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237 |
[5] |
Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549 |
[6] |
Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic & Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205 |
[7] |
Shu-Yu Hsu. Non-existence and behaviour at infinity of solutions of some elliptic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 769-786. doi: 10.3934/dcds.2004.10.769 |
[8] |
Ivan Landjev, Assia Rousseva. The non-existence of $(104,22;3,5)$-arcs. Advances in Mathematics of Communications, 2016, 10 (3) : 601-611. doi: 10.3934/amc.2016029 |
[9] |
J. F. Toland. Non-existence of global energy minimisers in Stokes waves problems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3211-3217. doi: 10.3934/dcds.2014.34.3211 |
[10] |
Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949 |
[11] |
Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125 |
[12] |
Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777 |
[13] |
Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184 |
[14] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[15] |
Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049 |
[16] |
Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555 |
[17] |
Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217 |
[18] |
Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 239-252. doi: 10.3934/mbe.2011.8.239 |
[19] |
Youcef Mammeri, Damien Sellier. A surface model of nonlinear, non-steady-state phloem transport. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1055-1069. doi: 10.3934/mbe.2017055 |
[20] |
Peter Müller, Gábor P. Nagy. On the non-existence of sharply transitive sets of permutations in certain finite permutation groups. Advances in Mathematics of Communications, 2011, 5 (2) : 303-308. doi: 10.3934/amc.2011.5.303 |
2016 Impact Factor: 0.781
Tools
Metrics
Other articles
by authors
[Back to Top]